Metamath Proof Explorer


Theorem umgredgnlp

Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypothesis umgredgnlp.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion umgredgnlp ( ( 𝐺 ∈ UMGraph ∧ 𝐶𝐸 ) → ¬ ∃ 𝑣 𝐶 = { 𝑣 } )

Proof

Step Hyp Ref Expression
1 umgredgnlp.e 𝐸 = ( Edg ‘ 𝐺 )
2 vex 𝑣 ∈ V
3 hashsng ( 𝑣 ∈ V → ( ♯ ‘ { 𝑣 } ) = 1 )
4 1ne2 1 ≠ 2
5 4 neii ¬ 1 = 2
6 eqeq1 ( ( ♯ ‘ { 𝑣 } ) = 1 → ( ( ♯ ‘ { 𝑣 } ) = 2 ↔ 1 = 2 ) )
7 5 6 mtbiri ( ( ♯ ‘ { 𝑣 } ) = 1 → ¬ ( ♯ ‘ { 𝑣 } ) = 2 )
8 2 3 7 mp2b ¬ ( ♯ ‘ { 𝑣 } ) = 2
9 fveqeq2 ( 𝐶 = { 𝑣 } → ( ( ♯ ‘ 𝐶 ) = 2 ↔ ( ♯ ‘ { 𝑣 } ) = 2 ) )
10 8 9 mtbiri ( 𝐶 = { 𝑣 } → ¬ ( ♯ ‘ 𝐶 ) = 2 )
11 10 intnand ( 𝐶 = { 𝑣 } → ¬ ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
12 1 eleq2i ( 𝐶𝐸𝐶 ∈ ( Edg ‘ 𝐺 ) )
13 edgumgr ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
14 12 13 sylan2b ( ( 𝐺 ∈ UMGraph ∧ 𝐶𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) )
15 11 14 nsyl3 ( ( 𝐺 ∈ UMGraph ∧ 𝐶𝐸 ) → ¬ 𝐶 = { 𝑣 } )
16 15 nexdv ( ( 𝐺 ∈ UMGraph ∧ 𝐶𝐸 ) → ¬ ∃ 𝑣 𝐶 = { 𝑣 } )