| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrnloopv.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | umgredgprv.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 4 | 2 1 | uhgrss | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑋 )  ⊆  𝑉 ) | 
						
							| 6 | 2 1 | umgredg2 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2 ) | 
						
							| 7 |  | sseq1 | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( 𝐸 ‘ 𝑋 )  ⊆  𝑉  ↔  { 𝑀 ,  𝑁 }  ⊆  𝑉 ) ) | 
						
							| 8 |  | fveqeq2 | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2  ↔  ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2 ) ) | 
						
							| 9 | 7 8 | anbi12d | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( ( 𝐸 ‘ 𝑋 )  ⊆  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2 )  ↔  ( { 𝑀 ,  𝑁 }  ⊆  𝑉  ∧  ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2 ) ) ) | 
						
							| 10 |  | eqid | ⊢ { 𝑀 ,  𝑁 }  =  { 𝑀 ,  𝑁 } | 
						
							| 11 | 10 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2  →  ( 𝑀  ∈  { 𝑀 ,  𝑁 }  ∧  𝑁  ∈  { 𝑀 ,  𝑁 }  ∧  𝑀  ≠  𝑁 ) ) | 
						
							| 12 |  | prssg | ⊢ ( ( 𝑀  ∈  { 𝑀 ,  𝑁 }  ∧  𝑁  ∈  { 𝑀 ,  𝑁 } )  →  ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  ↔  { 𝑀 ,  𝑁 }  ⊆  𝑉 ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝑀  ∈  { 𝑀 ,  𝑁 }  ∧  𝑁  ∈  { 𝑀 ,  𝑁 }  ∧  𝑀  ≠  𝑁 )  →  ( ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 )  ↔  { 𝑀 ,  𝑁 }  ⊆  𝑉 ) ) | 
						
							| 14 | 13 | biimprd | ⊢ ( ( 𝑀  ∈  { 𝑀 ,  𝑁 }  ∧  𝑁  ∈  { 𝑀 ,  𝑁 }  ∧  𝑀  ≠  𝑁 )  →  ( { 𝑀 ,  𝑁 }  ⊆  𝑉  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2  →  ( { 𝑀 ,  𝑁 }  ⊆  𝑉  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( { 𝑀 ,  𝑁 }  ⊆  𝑉  ∧  ( ♯ ‘ { 𝑀 ,  𝑁 } )  =  2 )  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) | 
						
							| 17 | 9 16 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( ( ( 𝐸 ‘ 𝑋 )  ⊆  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2 )  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) ) | 
						
							| 18 | 17 | com12 | ⊢ ( ( ( 𝐸 ‘ 𝑋 )  ⊆  𝑉  ∧  ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) )  =  2 )  →  ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) ) | 
						
							| 19 | 5 6 18 | syl2anc | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑋 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  𝑉  ∧  𝑁  ∈  𝑉 ) ) ) |