Metamath Proof Explorer


Theorem umgrf

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v 𝑉 = ( Vtx ‘ 𝐺 )
isumgr.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion umgrf ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )

Proof

Step Hyp Ref Expression
1 isumgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isumgr.e 𝐸 = ( iEdg ‘ 𝐺 )
3 1 2 isumgrs ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ UMGraph ↔ 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
4 3 ibi ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )