Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | umgrfn | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | umgrf | ⊢ ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | 
| 4 | fndm | ⊢ ( 𝐸 Fn 𝐴 → dom 𝐸 = 𝐴 ) | |
| 5 | 4 | feq2d | ⊢ ( 𝐸 Fn 𝐴 → ( 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | 
| 6 | 3 5 | syl5ibcom | ⊢ ( 𝐺 ∈ UMGraph → ( 𝐸 Fn 𝐴 → 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | 
| 7 | 6 | imp | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |