Metamath Proof Explorer


Theorem umgrfn

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v 𝑉 = ( Vtx ‘ 𝐺 )
isumgr.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion umgrfn ( ( 𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )

Proof

Step Hyp Ref Expression
1 isumgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isumgr.e 𝐸 = ( iEdg ‘ 𝐺 )
3 1 2 umgrf ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
4 fndm ( 𝐸 Fn 𝐴 → dom 𝐸 = 𝐴 )
5 4 feq2d ( 𝐸 Fn 𝐴 → ( 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
6 3 5 syl5ibcom ( 𝐺 ∈ UMGraph → ( 𝐸 Fn 𝐴𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
7 6 imp ( ( 𝐺 ∈ UMGraph ∧ 𝐸 Fn 𝐴 ) → 𝐸 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )