Step |
Hyp |
Ref |
Expression |
1 |
|
2pos |
⊢ 0 < 2 |
2 |
|
simprl |
⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝒫 𝑉 ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
4 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
5 |
3 4
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
6 |
5
|
breq2d |
⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 0 ) ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
7 8
|
lenlti |
⊢ ( 2 ≤ 0 ↔ ¬ 0 < 2 ) |
10 |
|
pm2.21 |
⊢ ( ¬ 0 < 2 → ( 0 < 2 → 𝑥 ≠ ∅ ) ) |
11 |
9 10
|
sylbi |
⊢ ( 2 ≤ 0 → ( 0 < 2 → 𝑥 ≠ ∅ ) ) |
12 |
6 11
|
syl6bi |
⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) ) |
13 |
12
|
adantld |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 0 < 2 → 𝑥 ≠ ∅ ) ) ) |
14 |
13
|
impcomd |
⊢ ( 𝑥 = ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) ) |
15 |
|
ax-1 |
⊢ ( 𝑥 ≠ ∅ → ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) ) |
16 |
14 15
|
pm2.61ine |
⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ≠ ∅ ) |
17 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝑉 ∧ 𝑥 ≠ ∅ ) ) |
18 |
2 16 17
|
sylanbrc |
⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
19 |
|
simprr |
⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
20 |
18 19
|
jca |
⊢ ( ( 0 < 2 ∧ ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
21 |
20
|
ex |
⊢ ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
22 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) → 𝑥 ∈ 𝒫 𝑉 ) |
23 |
22
|
anim1i |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
24 |
21 23
|
impbid1 |
⊢ ( 0 < 2 → ( ( 𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
25 |
24
|
rabbidva2 |
⊢ ( 0 < 2 → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
26 |
1 25
|
ax-mp |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
27 |
26
|
ineq2i |
⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
28 |
|
inrab |
⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) } |
29 |
|
hashxnn0 |
⊢ ( 𝑥 ∈ V → ( ♯ ‘ 𝑥 ) ∈ ℕ0* ) |
30 |
29
|
elv |
⊢ ( ♯ ‘ 𝑥 ) ∈ ℕ0* |
31 |
|
xnn0xr |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ℕ0* → ( ♯ ‘ 𝑥 ) ∈ ℝ* ) |
32 |
30 31
|
ax-mp |
⊢ ( ♯ ‘ 𝑥 ) ∈ ℝ* |
33 |
7
|
rexri |
⊢ 2 ∈ ℝ* |
34 |
|
xrletri3 |
⊢ ( ( ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ 2 ∈ ℝ* ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) ) |
35 |
32 33 34
|
mp2an |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
36 |
35
|
bicomi |
⊢ ( ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ 𝑥 ) = 2 ) |
37 |
36
|
rabbii |
⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ( ♯ ‘ 𝑥 ) ≤ 2 ∧ 2 ≤ ( ♯ ‘ 𝑥 ) ) } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
38 |
27 28 37
|
3eqtri |
⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |