| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pos | ⊢ 0  <  2 | 
						
							| 2 |  | simprl | ⊢ ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  𝑥  ∈  𝒫  𝑉 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 4 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  0 ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑥  =  ∅  →  ( 2  ≤  ( ♯ ‘ 𝑥 )  ↔  2  ≤  0 ) ) | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 | 7 8 | lenlti | ⊢ ( 2  ≤  0  ↔  ¬  0  <  2 ) | 
						
							| 10 |  | pm2.21 | ⊢ ( ¬  0  <  2  →  ( 0  <  2  →  𝑥  ≠  ∅ ) ) | 
						
							| 11 | 9 10 | sylbi | ⊢ ( 2  ≤  0  →  ( 0  <  2  →  𝑥  ≠  ∅ ) ) | 
						
							| 12 | 6 11 | biimtrdi | ⊢ ( 𝑥  =  ∅  →  ( 2  ≤  ( ♯ ‘ 𝑥 )  →  ( 0  <  2  →  𝑥  ≠  ∅ ) ) ) | 
						
							| 13 | 12 | adantld | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) )  →  ( 0  <  2  →  𝑥  ≠  ∅ ) ) ) | 
						
							| 14 | 13 | impcomd | ⊢ ( 𝑥  =  ∅  →  ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  𝑥  ≠  ∅ ) ) | 
						
							| 15 |  | ax-1 | ⊢ ( 𝑥  ≠  ∅  →  ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  𝑥  ≠  ∅ ) ) | 
						
							| 16 | 14 15 | pm2.61ine | ⊢ ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  𝑥  ≠  ∅ ) | 
						
							| 17 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ↔  ( 𝑥  ∈  𝒫  𝑉  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 18 | 2 16 17 | sylanbrc | ⊢ ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  2  ≤  ( ♯ ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | jca | ⊢ ( ( 0  <  2  ∧  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 0  <  2  →  ( ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) )  →  ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 22 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  →  𝑥  ∈  𝒫  𝑉 ) | 
						
							| 23 | 22 | anim1i | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  2  ≤  ( ♯ ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 24 | 21 23 | impbid1 | ⊢ ( 0  <  2  →  ( ( 𝑥  ∈  𝒫  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 24 | rabbidva2 | ⊢ ( 0  <  2  →  { 𝑥  ∈  𝒫  𝑉  ∣  2  ≤  ( ♯ ‘ 𝑥 ) }  =  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } ) | 
						
							| 26 | 1 25 | ax-mp | ⊢ { 𝑥  ∈  𝒫  𝑉  ∣  2  ≤  ( ♯ ‘ 𝑥 ) }  =  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } | 
						
							| 27 | 26 | ineq2i | ⊢ ( { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ∩  { 𝑥  ∈  𝒫  𝑉  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } )  =  ( { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ∩  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } ) | 
						
							| 28 |  | inrab | ⊢ ( { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ∩  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } )  =  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ( ♯ ‘ 𝑥 )  ≤  2  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) } | 
						
							| 29 |  | hashxnn0 | ⊢ ( 𝑥  ∈  V  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0* ) | 
						
							| 30 | 29 | elv | ⊢ ( ♯ ‘ 𝑥 )  ∈  ℕ0* | 
						
							| 31 |  | xnn0xr | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℕ0*  →  ( ♯ ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ ( ♯ ‘ 𝑥 )  ∈  ℝ* | 
						
							| 33 | 7 | rexri | ⊢ 2  ∈  ℝ* | 
						
							| 34 |  | xrletri3 | ⊢ ( ( ( ♯ ‘ 𝑥 )  ∈  ℝ*  ∧  2  ∈  ℝ* )  →  ( ( ♯ ‘ 𝑥 )  =  2  ↔  ( ( ♯ ‘ 𝑥 )  ≤  2  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 32 33 34 | mp2an | ⊢ ( ( ♯ ‘ 𝑥 )  =  2  ↔  ( ( ♯ ‘ 𝑥 )  ≤  2  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 36 | 35 | bicomi | ⊢ ( ( ( ♯ ‘ 𝑥 )  ≤  2  ∧  2  ≤  ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ 𝑥 )  =  2 ) | 
						
							| 37 | 36 | rabbii | ⊢ { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ( ♯ ‘ 𝑥 )  ≤  2  ∧  2  ≤  ( ♯ ‘ 𝑥 ) ) }  =  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } | 
						
							| 38 | 27 28 37 | 3eqtri | ⊢ ( { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  ∩  { 𝑥  ∈  𝒫  𝑉  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } )  =  { 𝑥  ∈  ( 𝒫  𝑉  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  =  2 } |