Metamath Proof Explorer


Theorem umgrnloop

Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypothesis umgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion umgrnloop ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 umgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 1 2 umgredgprv ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) )
4 3 imp ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) )
5 1 umgrnloopv ( ( 𝐺 ∈ UMGraph ∧ 𝑀 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )
6 5 ex ( 𝐺 ∈ UMGraph → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) ) )
7 6 com23 ( 𝐺 ∈ UMGraph → ( ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀𝑁 ) ) )
8 7 adantr ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀𝑁 ) ) )
9 8 imp ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀𝑁 ) )
10 9 com12 ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀𝑁 ) )
11 10 adantr ( ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀𝑁 ) )
12 4 11 mpcom ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀𝑁 )
13 12 rexlimdva2 ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )