Step |
Hyp |
Ref |
Expression |
1 |
|
umgrnloopv.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
1 2
|
umgredgprv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
5 |
1
|
umgrnloopv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑀 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |
6 |
5
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) ) |
7 |
6
|
com23 |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → 𝑀 ≠ 𝑁 ) ) |
10 |
9
|
com12 |
⊢ ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑀 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) ) |
12 |
4 11
|
mpcom |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸 ) ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } ) → 𝑀 ≠ 𝑁 ) |
13 |
12
|
rexlimdva2 |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |