| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrnloopv.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 1 2 | umgredgprv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  ∧  ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 } )  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 5 | 1 | umgrnloopv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑀  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  𝑀  ≠  𝑁 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 7 | 6 | com23 | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  →  ( ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  →  𝑀  ≠  𝑁 ) ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  ∧  ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 } )  →  ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  →  𝑀  ≠  𝑁 ) ) | 
						
							| 10 | 9 | com12 | ⊢ ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  →  ( ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  ∧  ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 } )  →  𝑀  ≠  𝑁 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑀  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  ∧  ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 } )  →  𝑀  ≠  𝑁 ) ) | 
						
							| 12 | 4 11 | mpcom | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑥  ∈  dom  𝐸 )  ∧  ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 } )  →  𝑀  ≠  𝑁 ) | 
						
							| 13 | 12 | rexlimdva2 | ⊢ ( 𝐺  ∈  UMGraph  →  ( ∃ 𝑥  ∈  dom  𝐸 ( 𝐸 ‘ 𝑥 )  =  { 𝑀 ,  𝑁 }  →  𝑀  ≠  𝑁 ) ) |