Step |
Hyp |
Ref |
Expression |
1 |
|
umgrnloopv.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
neirr |
⊢ ¬ 𝑈 ≠ 𝑈 |
3 |
1
|
umgrnloop |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } → 𝑈 ≠ 𝑈 ) ) |
4 |
2 3
|
mtoi |
⊢ ( 𝐺 ∈ UMGraph → ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) |
5 |
|
simpr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) → ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
6 |
|
dfsn2 |
⊢ { 𝑈 } = { 𝑈 , 𝑈 } |
7 |
5 6
|
eqtrdi |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) → ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) |
8 |
7
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝐸 ‘ 𝑥 ) = { 𝑈 } → ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) ) |
9 |
8
|
reximdv |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } → ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 , 𝑈 } ) ) |
10 |
4 9
|
mtod |
⊢ ( 𝐺 ∈ UMGraph → ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
11 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ↔ ¬ ∃ 𝑥 ∈ dom 𝐸 ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
12 |
10 11
|
sylibr |
⊢ ( 𝐺 ∈ UMGraph → ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
13 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑥 ∈ dom 𝐸 ¬ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } ) |
14 |
12 13
|
sylibr |
⊢ ( 𝐺 ∈ UMGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ ) |