Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
umgrpredgv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
4 |
3
|
simpld |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ 𝑁 = 𝑁 |
6 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁 ≠ 𝑁 ) |
7 |
|
eqneqall |
⊢ ( 𝑁 = 𝑁 → ( 𝑁 ≠ 𝑁 → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
8 |
5 6 7
|
mpsyl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
9 |
4 8
|
pm2.65da |
⊢ ( 𝐺 ∈ UMGraph → ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
10 |
|
df-nel |
⊢ ( { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝐺 ∈ UMGraph → { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ) |