Metamath Proof Explorer


Theorem umgrnloop2

Description: A multigraph has no loops. (Contributed by AV, 27-Oct-2020) (Revised by AV, 30-Nov-2020)

Ref Expression
Assertion umgrnloop2 ( 𝐺 ∈ UMGraph → { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
3 1 2 umgrpredgv ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) )
4 3 simpld ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) )
5 eqid 𝑁 = 𝑁
6 2 umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → 𝑁𝑁 )
7 eqneqall ( 𝑁 = 𝑁 → ( 𝑁𝑁 → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) )
8 5 6 7 mpsyl ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ¬ 𝑁 ∈ ( Vtx ‘ 𝐺 ) )
9 4 8 pm2.65da ( 𝐺 ∈ UMGraph → ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) )
10 df-nel ( { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) )
11 9 10 sylibr ( 𝐺 ∈ UMGraph → { 𝑁 , 𝑁 } ∉ ( Edg ‘ 𝐺 ) )