Step |
Hyp |
Ref |
Expression |
1 |
|
umgrnloopv.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
prnzg |
⊢ ( 𝑀 ∈ 𝑊 → { 𝑀 , 𝑁 } ≠ ∅ ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → { 𝑀 , 𝑁 } ≠ ∅ ) |
4 |
|
neeq1 |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ ↔ { 𝑀 , 𝑁 } ≠ ∅ ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ ↔ { 𝑀 , 𝑁 } ≠ ∅ ) ) |
6 |
3 5
|
mpbird |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐸 ‘ 𝑋 ) ≠ ∅ ) |
7 |
|
fvfundmfvn0 |
⊢ ( ( 𝐸 ‘ 𝑋 ) ≠ ∅ → ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) ) |
9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
10 |
9 1
|
umgredg2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
11 |
|
fveqeq2 |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
12 |
|
eqid |
⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } |
13 |
12
|
hashprdifel |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
14 |
13
|
simp3d |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → 𝑀 ≠ 𝑁 ) |
15 |
11 14
|
syl6bi |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 → 𝑀 ≠ 𝑁 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 → 𝑀 ≠ 𝑁 ) ) |
17 |
10 16
|
syl5com |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → 𝑀 ≠ 𝑁 ) ) |
18 |
17
|
expcom |
⊢ ( 𝑋 ∈ dom 𝐸 → ( 𝐺 ∈ UMGraph → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → 𝑀 ≠ 𝑁 ) ) ) |
19 |
18
|
com23 |
⊢ ( 𝑋 ∈ dom 𝐸 → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑋 ∈ dom 𝐸 ∧ Fun ( 𝐸 ↾ { 𝑋 } ) ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
21 |
8 20
|
mpcom |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } ∧ 𝑀 ∈ 𝑊 ) → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑊 → ( 𝐺 ∈ UMGraph → 𝑀 ≠ 𝑁 ) ) ) |
23 |
22
|
com13 |
⊢ ( 𝐺 ∈ UMGraph → ( 𝑀 ∈ 𝑊 → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → 𝑀 ≠ 𝑁 ) ) |