Step |
Hyp |
Ref |
Expression |
1 |
|
upgredg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgredg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
2
|
eleq2i |
⊢ ( { 𝑀 , 𝑁 } ∈ 𝐸 ↔ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
|
edgumgr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ ( Edg ‘ 𝐺 ) ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
5 |
3 4
|
sylan2b |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
6 |
|
eqid |
⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } |
7 |
6
|
hashprdifel |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
8 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
9 |
8
|
pweqi |
⊢ 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 |
10 |
9
|
eleq2i |
⊢ ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝑀 , 𝑁 } ∈ 𝒫 𝑉 ) |
11 |
|
prelpw |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ∈ 𝒫 𝑉 ) ) |
12 |
11
|
biimprd |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
13 |
10 12
|
syl5bi |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
15 |
7 14
|
syl |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
16 |
15
|
impcom |
⊢ ( ( { 𝑀 , 𝑁 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
17 |
5 16
|
syl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |