Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
upgrres.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
4 |
|
upgrres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 |
5 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
6 |
2
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
7 |
|
funres |
⊢ ( Fun 𝐸 → Fun ( 𝐸 ↾ 𝐹 ) ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐺 ∈ UMGraph → Fun ( 𝐸 ↾ 𝐹 ) ) |
9 |
8
|
funfnd |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ) |
11 |
1 2 3
|
umgrreslem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
12 |
|
df-f |
⊢ ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( ( 𝐸 ↾ 𝐹 ) Fn dom ( 𝐸 ↾ 𝐹 ) ∧ ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
14 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 ∈ V |
15 |
4 14
|
eqeltri |
⊢ 𝑆 ∈ V |
16 |
1 2 3 4
|
uhgrspan1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
17 |
16
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
18 |
1 2 3 4
|
uhgrspan1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐹 ) |
19 |
18
|
eqcomi |
⊢ ( 𝐸 ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
20 |
17 19
|
isumgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UMGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
21 |
15 20
|
mp1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UMGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
22 |
13 21
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UMGraph ) |