| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres1.f | ⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 } | 
						
							| 4 |  | upgrres1.s | ⊢ 𝑆  =  〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉 | 
						
							| 5 |  | f1oi | ⊢ (  I   ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹 | 
						
							| 6 |  | f1of | ⊢ ( (  I   ↾  𝐹 ) : 𝐹 –1-1-onto→ 𝐹  →  (  I   ↾  𝐹 ) : 𝐹 ⟶ 𝐹 ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  (  I   ↾  𝐹 ) : 𝐹 ⟶ 𝐹 ) | 
						
							| 8 | 7 | ffdmd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  (  I   ↾  𝐹 ) : dom  (  I   ↾  𝐹 ) ⟶ 𝐹 ) | 
						
							| 9 |  | rnresi | ⊢ ran  (  I   ↾  𝐹 )  =  𝐹 | 
						
							| 10 | 1 2 3 | umgrres1lem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ran  (  I   ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 11 | 9 10 | eqsstrrid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 12 | 8 11 | fssd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  (  I   ↾  𝐹 ) : dom  (  I   ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 13 |  | opex | ⊢ 〈 ( 𝑉  ∖  { 𝑁 } ) ,  (  I   ↾  𝐹 ) 〉  ∈  V | 
						
							| 14 | 4 13 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 15 | 1 2 3 4 | upgrres1lem2 | ⊢ ( Vtx ‘ 𝑆 )  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 16 | 15 | eqcomi | ⊢ ( 𝑉  ∖  { 𝑁 } )  =  ( Vtx ‘ 𝑆 ) | 
						
							| 17 | 1 2 3 4 | upgrres1lem3 | ⊢ ( iEdg ‘ 𝑆 )  =  (  I   ↾  𝐹 ) | 
						
							| 18 | 17 | eqcomi | ⊢ (  I   ↾  𝐹 )  =  ( iEdg ‘ 𝑆 ) | 
						
							| 19 | 16 18 | isumgrs | ⊢ ( 𝑆  ∈  V  →  ( 𝑆  ∈  UMGraph  ↔  (  I   ↾  𝐹 ) : dom  (  I   ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 20 | 14 19 | mp1i | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑆  ∈  UMGraph  ↔  (  I   ↾  𝐹 ) : dom  (  I   ↾  𝐹 ) ⟶ { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) ) | 
						
							| 21 | 12 20 | mpbird | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  𝑆  ∈  UMGraph ) |