Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
upgrres1.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
upgrres1.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
f1oi |
⊢ ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 |
6 |
|
f1of |
⊢ ( ( I ↾ 𝐹 ) : 𝐹 –1-1-onto→ 𝐹 → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
7 |
5 6
|
mp1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : 𝐹 ⟶ 𝐹 ) |
8 |
7
|
ffdmd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ 𝐹 ) |
9 |
|
rnresi |
⊢ ran ( I ↾ 𝐹 ) = 𝐹 |
10 |
1 2 3
|
umgrres1lem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
11 |
9 10
|
eqsstrrid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
12 |
8 11
|
fssd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
13 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V |
14 |
4 13
|
eqeltri |
⊢ 𝑆 ∈ V |
15 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
16 |
15
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
17 |
1 2 3 4
|
upgrres1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
18 |
17
|
eqcomi |
⊢ ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
19 |
16 18
|
isumgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
20 |
14 19
|
mp1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
21 |
12 20
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UMGraph ) |