Metamath Proof Explorer


Theorem umgrres1

Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses upgrres1.v 𝑉 = ( Vtx ‘ 𝐺 )
upgrres1.e 𝐸 = ( Edg ‘ 𝐺 )
upgrres1.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
upgrres1.s 𝑆 = ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩
Assertion umgrres1 ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 upgrres1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 upgrres1.e 𝐸 = ( Edg ‘ 𝐺 )
3 upgrres1.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
4 upgrres1.s 𝑆 = ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩
5 f1oi ( I ↾ 𝐹 ) : 𝐹1-1-onto𝐹
6 f1of ( ( I ↾ 𝐹 ) : 𝐹1-1-onto𝐹 → ( I ↾ 𝐹 ) : 𝐹𝐹 )
7 5 6 mp1i ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( I ↾ 𝐹 ) : 𝐹𝐹 )
8 7 ffdmd ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ 𝐹 )
9 rnresi ran ( I ↾ 𝐹 ) = 𝐹
10 1 2 3 umgrres1lem ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ran ( I ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )
11 9 10 eqsstrrid ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → 𝐹 ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )
12 8 11 fssd ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } )
13 opex ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩ ∈ V
14 4 13 eqeltri 𝑆 ∈ V
15 1 2 3 4 upgrres1lem2 ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } )
16 15 eqcomi ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 )
17 1 2 3 4 upgrres1lem3 ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 )
18 17 eqcomi ( I ↾ 𝐹 ) = ( iEdg ‘ 𝑆 )
19 16 18 isumgrs ( 𝑆 ∈ V → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) )
20 14 19 mp1i ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → ( 𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹 ) : dom ( I ↾ 𝐹 ) ⟶ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) )
21 12 20 mpbird ( ( 𝐺 ∈ UMGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ UMGraph )