| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrres1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upgrres1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | upgrres1.f | ⊢ 𝐹  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 } | 
						
							| 4 |  | rnresi | ⊢ ran  (  I   ↾  𝐹 )  =  𝐹 | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  →  𝑒  ∈  𝐸 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  ∧  𝑁  ∉  𝑒 )  →  𝑒  ∈  𝐸 ) | 
						
							| 7 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 8 | 2 | eleq2i | ⊢ ( 𝑒  ∈  𝐸  ↔  𝑒  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝑒  ∈  𝐸  →  𝑒  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 10 |  | edguhgr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  ( Edg ‘ 𝐺 ) )  →  𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  →  𝑒  ⊆  ( Vtx ‘ 𝐺 ) ) | 
						
							| 12 | 11 1 | sseqtrrdi | ⊢ ( 𝑒  ∈  𝒫  ( Vtx ‘ 𝐺 )  →  𝑒  ⊆  𝑉 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑒  ∈  ( Edg ‘ 𝐺 ) )  →  𝑒  ⊆  𝑉 ) | 
						
							| 14 | 7 9 13 | syl2an | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑒  ∈  𝐸 )  →  𝑒  ⊆  𝑉 ) | 
						
							| 15 | 14 | ad4ant13 | ⊢ ( ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  ∧  𝑁  ∉  𝑒 )  →  𝑒  ⊆  𝑉 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  ∧  𝑁  ∉  𝑒 )  →  𝑁  ∉  𝑒 ) | 
						
							| 17 |  | elpwdifsn | ⊢ ( ( 𝑒  ∈  𝐸  ∧  𝑒  ⊆  𝑉  ∧  𝑁  ∉  𝑒 )  →  𝑒  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 18 | 6 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  ∧  𝑁  ∉  𝑒 )  →  𝑒  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑒  ∈  𝐸 )  →  ( 𝑁  ∉  𝑒  →  𝑒  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ∀ 𝑒  ∈  𝐸 ( 𝑁  ∉  𝑒  →  𝑒  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 21 |  | rabss | ⊢ ( { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } )  ↔  ∀ 𝑒  ∈  𝐸 ( 𝑁  ∉  𝑒  →  𝑒  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 23 | 3 22 | eqsstrid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  ⊆  𝒫  ( 𝑉  ∖  { 𝑁 } ) ) | 
						
							| 24 |  | elrabi | ⊢ ( 𝑝  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  →  𝑝  ∈  𝐸 ) | 
						
							| 25 | 24 2 | eleqtrdi | ⊢ ( 𝑝  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  →  𝑝  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 26 |  | edgumgr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑝  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑝  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 27 | 26 | simprd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑝  ∈  ( Edg ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑝 )  =  2 ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝑝  ∈  ( Edg ‘ 𝐺 )  →  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑝  ∈  ( Edg ‘ 𝐺 )  →  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 30 | 25 29 | syl5com | ⊢ ( 𝑝  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∉  𝑒 }  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 31 | 30 3 | eleq2s | ⊢ ( 𝑝  ∈  𝐹  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ 𝑝 )  =  2 ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑝  ∈  𝐹 )  →  ( ♯ ‘ 𝑝 )  =  2 ) | 
						
							| 33 | 23 32 | ssrabdv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) | 
						
							| 34 | 4 33 | eqsstrid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  𝑉 )  →  ran  (  I   ↾  𝐹 )  ⊆  { 𝑝  ∈  𝒫  ( 𝑉  ∖  { 𝑁 } )  ∣  ( ♯ ‘ 𝑝 )  =  2 } ) |