Description: A spanning subgraph S of a multigraph G is a multigraph. (Contributed by AV, 27-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | ||
umgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | ||
Assertion | umgrspan | ⊢ ( 𝜑 → 𝑆 ∈ UMGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
3 | uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
4 | uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
5 | uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | |
6 | umgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) | |
7 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
8 | 6 7 | syl | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
9 | 1 2 3 4 5 8 | uhgrspansubgr | ⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) |
10 | subumgr | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UMGraph ) | |
11 | 6 9 10 | syl2anc | ⊢ ( 𝜑 → 𝑆 ∈ UMGraph ) |