Metamath Proof Explorer


Theorem umgrspan

Description: A spanning subgraph S of a multigraph G is a multigraph. (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgrspan.e 𝐸 = ( iEdg ‘ 𝐺 )
uhgrspan.s ( 𝜑𝑆𝑊 )
uhgrspan.q ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
uhgrspan.r ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸𝐴 ) )
umgrspan.g ( 𝜑𝐺 ∈ UMGraph )
Assertion umgrspan ( 𝜑𝑆 ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 uhgrspan.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgrspan.e 𝐸 = ( iEdg ‘ 𝐺 )
3 uhgrspan.s ( 𝜑𝑆𝑊 )
4 uhgrspan.q ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
5 uhgrspan.r ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸𝐴 ) )
6 umgrspan.g ( 𝜑𝐺 ∈ UMGraph )
7 umgruhgr ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph )
8 6 7 syl ( 𝜑𝐺 ∈ UHGraph )
9 1 2 3 4 5 8 uhgrspansubgr ( 𝜑𝑆 SubGraph 𝐺 )
10 subumgr ( ( 𝐺 ∈ UMGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UMGraph )
11 6 9 10 syl2anc ( 𝜑𝑆 ∈ UMGraph )