Metamath Proof Explorer


Theorem umgrun

Description: The union U of two multigraphs G and H with the same vertex set V is a multigraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgrun.g ( 𝜑𝐺 ∈ UMGraph )
umgrun.h ( 𝜑𝐻 ∈ UMGraph )
umgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
umgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
umgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
umgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
umgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
umgrun.u ( 𝜑𝑈𝑊 )
umgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
umgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion umgrun ( 𝜑𝑈 ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 umgrun.g ( 𝜑𝐺 ∈ UMGraph )
2 umgrun.h ( 𝜑𝐻 ∈ UMGraph )
3 umgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 umgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 umgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 umgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 umgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 umgrun.u ( 𝜑𝑈𝑊 )
9 umgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 umgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 5 3 umgrf ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
12 1 11 syl ( 𝜑𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
13 eqid ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 )
14 13 4 umgrf ( 𝐻 ∈ UMGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
15 2 14 syl ( 𝜑𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
16 6 eqcomd ( 𝜑𝑉 = ( Vtx ‘ 𝐻 ) )
17 16 pweqd ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) )
18 17 rabeqdv ( 𝜑 → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
19 18 feq3d ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
20 15 19 mpbird ( 𝜑𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
21 12 20 7 fun2d ( 𝜑 → ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
22 10 dmeqd ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸𝐹 ) )
23 dmun dom ( 𝐸𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 )
24 22 23 eqtrdi ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) )
25 9 pweqd ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 )
26 25 rabeqdv ( 𝜑 → { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )
27 10 24 26 feq123d ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝐸𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
28 21 27 mpbird ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } )
29 eqid ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 )
30 eqid ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 )
31 29 30 isumgrs ( 𝑈𝑊 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
32 8 31 syl ( 𝜑 → ( 𝑈 ∈ UMGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝑈 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) )
33 28 32 mpbird ( 𝜑𝑈 ∈ UMGraph )