| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrun.g | ⊢ ( 𝜑  →  𝐺  ∈  UMGraph ) | 
						
							| 2 |  | umgrun.h | ⊢ ( 𝜑  →  𝐻  ∈  UMGraph ) | 
						
							| 3 |  | umgrun.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 4 |  | umgrun.f | ⊢ 𝐹  =  ( iEdg ‘ 𝐻 ) | 
						
							| 5 |  | umgrun.vg | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 |  | umgrun.vh | ⊢ ( 𝜑  →  ( Vtx ‘ 𝐻 )  =  𝑉 ) | 
						
							| 7 |  | umgrun.i | ⊢ ( 𝜑  →  ( dom  𝐸  ∩  dom  𝐹 )  =  ∅ ) | 
						
							| 8 |  | umgrun.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑊 ) | 
						
							| 9 |  | umgrun.v | ⊢ ( 𝜑  →  ( Vtx ‘ 𝑈 )  =  𝑉 ) | 
						
							| 10 |  | umgrun.un | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑈 )  =  ( 𝐸  ∪  𝐹 ) ) | 
						
							| 11 | 5 3 | umgrf | ⊢ ( 𝐺  ∈  UMGraph  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 13 |  | eqid | ⊢ ( Vtx ‘ 𝐻 )  =  ( Vtx ‘ 𝐻 ) | 
						
							| 14 | 13 4 | umgrf | ⊢ ( 𝐻  ∈  UMGraph  →  𝐹 : dom  𝐹 ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐻 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐻 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 16 | 6 | eqcomd | ⊢ ( 𝜑  →  𝑉  =  ( Vtx ‘ 𝐻 ) ) | 
						
							| 17 | 16 | pweqd | ⊢ ( 𝜑  →  𝒫  𝑉  =  𝒫  ( Vtx ‘ 𝐻 ) ) | 
						
							| 18 | 17 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐻 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 19 | 18 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  𝐹 : dom  𝐹 ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐻 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 20 | 15 19 | mpbird | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 21 | 12 20 7 | fun2d | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 ) : ( dom  𝐸  ∪  dom  𝐹 ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 22 | 10 | dmeqd | ⊢ ( 𝜑  →  dom  ( iEdg ‘ 𝑈 )  =  dom  ( 𝐸  ∪  𝐹 ) ) | 
						
							| 23 |  | dmun | ⊢ dom  ( 𝐸  ∪  𝐹 )  =  ( dom  𝐸  ∪  dom  𝐹 ) | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( 𝜑  →  dom  ( iEdg ‘ 𝑈 )  =  ( dom  𝐸  ∪  dom  𝐹 ) ) | 
						
							| 25 | 9 | pweqd | ⊢ ( 𝜑  →  𝒫  ( Vtx ‘ 𝑈 )  =  𝒫  𝑉 ) | 
						
							| 26 | 25 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  𝒫  ( Vtx ‘ 𝑈 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  =  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 27 | 10 24 26 | feq123d | ⊢ ( 𝜑  →  ( ( iEdg ‘ 𝑈 ) : dom  ( iEdg ‘ 𝑈 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝑈 )  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ↔  ( 𝐸  ∪  𝐹 ) : ( dom  𝐸  ∪  dom  𝐹 ) ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 28 | 21 27 | mpbird | ⊢ ( 𝜑  →  ( iEdg ‘ 𝑈 ) : dom  ( iEdg ‘ 𝑈 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝑈 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 29 |  | eqid | ⊢ ( Vtx ‘ 𝑈 )  =  ( Vtx ‘ 𝑈 ) | 
						
							| 30 |  | eqid | ⊢ ( iEdg ‘ 𝑈 )  =  ( iEdg ‘ 𝑈 ) | 
						
							| 31 | 29 30 | isumgrs | ⊢ ( 𝑈  ∈  𝑊  →  ( 𝑈  ∈  UMGraph  ↔  ( iEdg ‘ 𝑈 ) : dom  ( iEdg ‘ 𝑈 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝑈 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 32 | 8 31 | syl | ⊢ ( 𝜑  →  ( 𝑈  ∈  UMGraph  ↔  ( iEdg ‘ 𝑈 ) : dom  ( iEdg ‘ 𝑈 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝑈 )  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) ) | 
						
							| 33 | 28 32 | mpbird | ⊢ ( 𝜑  →  𝑈  ∈  UMGraph ) |