Step |
Hyp |
Ref |
Expression |
1 |
|
umgrun.g |
⊢ ( 𝜑 → 𝐺 ∈ UMGraph ) |
2 |
|
umgrun.h |
⊢ ( 𝜑 → 𝐻 ∈ UMGraph ) |
3 |
|
umgrun.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
4 |
|
umgrun.f |
⊢ 𝐹 = ( iEdg ‘ 𝐻 ) |
5 |
|
umgrun.vg |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
6 |
|
umgrun.vh |
⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
7 |
|
umgrun.i |
⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) |
8 |
|
opex |
⊢ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ V ) |
10 |
5
|
fvexi |
⊢ 𝑉 ∈ V |
11 |
3
|
fvexi |
⊢ 𝐸 ∈ V |
12 |
4
|
fvexi |
⊢ 𝐹 ∈ V |
13 |
11 12
|
unex |
⊢ ( 𝐸 ∪ 𝐹 ) ∈ V |
14 |
10 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) |
15 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = 𝑉 ) |
17 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( 𝐸 ∪ 𝐹 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) |
18 |
14 17
|
mp1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ) = ( 𝐸 ∪ 𝐹 ) ) |
19 |
1 2 3 4 5 6 7 9 16 18
|
umgrun |
⊢ ( 𝜑 → 〈 𝑉 , ( 𝐸 ∪ 𝐹 ) 〉 ∈ UMGraph ) |