Step |
Hyp |
Ref |
Expression |
1 |
|
umgrupgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
2
|
upgrwlkvtxedg |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
5 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
6 |
5
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
8 |
7
|
ralimdv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
9 |
4 8
|
mpd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |