Step |
Hyp |
Ref |
Expression |
1 |
|
s3wwlks2on.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgrwwlks2on.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
umgrupgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph ) |
4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐺 ∈ UPGraph ) |
5 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
7 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
8 |
1
|
s3wwlks2on |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
9 |
4 6 7 8
|
syl3anc |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
10 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
11 |
1 10
|
upgr2wlk |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) |
12 |
3 11
|
syl |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) |
14 |
|
s3fv0 |
⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
16 |
|
s3fv1 |
⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
18 |
15 17
|
preq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } = { 𝐴 , 𝐵 } ) |
19 |
18
|
eqeq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ) ) |
20 |
|
s3fv2 |
⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
22 |
17 21
|
preq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
23 |
22
|
eqeq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) |
24 |
19 23
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) |
26 |
25
|
3anbi3d |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ↔ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) ) |
27 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
28 |
10
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
29 |
|
fdmrn |
⊢ ( Fun ( iEdg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) |
30 |
|
simpr |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) |
31 |
|
id |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ) |
32 |
|
c0ex |
⊢ 0 ∈ V |
33 |
32
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
34 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
35 |
33 34
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 2 ) |
36 |
35
|
a1i |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → 0 ∈ ( 0 ..^ 2 ) ) |
37 |
31 36
|
ffvelrnd |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( 𝑓 ‘ 0 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
39 |
30 38
|
ffvelrnd |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
40 |
|
1ex |
⊢ 1 ∈ V |
41 |
40
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
42 |
41 34
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 2 ) |
43 |
42
|
a1i |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → 1 ∈ ( 0 ..^ 2 ) ) |
44 |
31 43
|
ffvelrnd |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( 𝑓 ‘ 1 ) ∈ dom ( iEdg ‘ 𝐺 ) ) |
46 |
30 45
|
ffvelrnd |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
47 |
39 46
|
jca |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
48 |
47
|
ex |
⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
50 |
49
|
com12 |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ran ( iEdg ‘ 𝐺 ) → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
51 |
29 50
|
sylbi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
52 |
27 28 51
|
3syl |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
54 |
|
eqcom |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ↔ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) |
55 |
54
|
biimpi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } → { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) |
57 |
56
|
3ad2ant3 |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) |
58 |
57
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) |
59 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
60 |
2 59
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
61 |
60
|
a1i |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
62 |
58 61
|
eleq12d |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
63 |
|
eqcom |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ↔ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) |
64 |
63
|
biimpi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } → { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) |
65 |
64
|
adantl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) → { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) |
66 |
65
|
3ad2ant3 |
⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) |
68 |
67 61
|
eleq12d |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
69 |
62 68
|
anbi12d |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) ) |
70 |
53 69
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
71 |
70
|
ex |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { 𝐵 , 𝐶 } ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
73 |
26 72
|
sylbid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom ( iEdg ‘ 𝐺 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉 ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) = { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) , ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
74 |
13 73
|
sylbid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
75 |
74
|
exlimdv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
76 |
2
|
umgr2wlk |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) |
77 |
|
wlklenvp1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) |
78 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = ( 2 + 1 ) ) |
79 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
80 |
78 79
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑓 ) + 1 ) = 3 ) |
81 |
80
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( ( ♯ ‘ 𝑓 ) + 1 ) = 3 ) |
82 |
77 81
|
sylan9eq |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( ♯ ‘ 𝑝 ) = 3 ) |
83 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑝 ‘ 0 ) ↔ ( 𝑝 ‘ 0 ) = 𝐴 ) |
84 |
|
eqcom |
⊢ ( 𝐵 = ( 𝑝 ‘ 1 ) ↔ ( 𝑝 ‘ 1 ) = 𝐵 ) |
85 |
|
eqcom |
⊢ ( 𝐶 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝐶 ) |
86 |
83 84 85
|
3anbi123i |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ↔ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) |
87 |
86
|
biimpi |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) |
88 |
87
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) |
89 |
88
|
adantl |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) |
90 |
82 89
|
jca |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) ) |
91 |
1
|
wlkpwrd |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑝 ∈ Word 𝑉 ) |
92 |
80
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑓 ) = 2 → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ↔ ( ♯ ‘ 𝑝 ) = 3 ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ↔ ( ♯ ‘ 𝑝 ) = 3 ) ) |
94 |
|
simp1 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → 𝑝 ∈ Word 𝑉 ) |
95 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑝 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = ( 0 ..^ 3 ) ) |
96 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
97 |
95 96
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑝 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } ) |
98 |
32
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
99 |
|
eleq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ↔ 0 ∈ { 0 , 1 , 2 } ) ) |
100 |
98 99
|
mpbiri |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) |
101 |
|
wrdsymbcl |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) → ( 𝑝 ‘ 0 ) ∈ 𝑉 ) |
102 |
100 101
|
sylan2 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } ) → ( 𝑝 ‘ 0 ) ∈ 𝑉 ) |
103 |
40
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
104 |
|
eleq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → ( 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ↔ 1 ∈ { 0 , 1 , 2 } ) ) |
105 |
103 104
|
mpbiri |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) |
106 |
|
wrdsymbcl |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) → ( 𝑝 ‘ 1 ) ∈ 𝑉 ) |
107 |
105 106
|
sylan2 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } ) → ( 𝑝 ‘ 1 ) ∈ 𝑉 ) |
108 |
|
2ex |
⊢ 2 ∈ V |
109 |
108
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
110 |
|
eleq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → ( 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ↔ 2 ∈ { 0 , 1 , 2 } ) ) |
111 |
109 110
|
mpbiri |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) |
112 |
|
wrdsymbcl |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) → ( 𝑝 ‘ 2 ) ∈ 𝑉 ) |
113 |
111 112
|
sylan2 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } ) → ( 𝑝 ‘ 2 ) ∈ 𝑉 ) |
114 |
102 107 113
|
3jca |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝑝 ) ) = { 0 , 1 , 2 } ) → ( ( 𝑝 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) |
115 |
97 114
|
sylan2 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ) → ( ( 𝑝 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) |
116 |
115
|
3adant3 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝑝 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) |
117 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑝 ‘ 0 ) → ( 𝐴 ∈ 𝑉 ↔ ( 𝑝 ‘ 0 ) ∈ 𝑉 ) ) |
118 |
117
|
3ad2ant1 |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝐴 ∈ 𝑉 ↔ ( 𝑝 ‘ 0 ) ∈ 𝑉 ) ) |
119 |
|
eleq1 |
⊢ ( 𝐵 = ( 𝑝 ‘ 1 ) → ( 𝐵 ∈ 𝑉 ↔ ( 𝑝 ‘ 1 ) ∈ 𝑉 ) ) |
120 |
119
|
3ad2ant2 |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝐵 ∈ 𝑉 ↔ ( 𝑝 ‘ 1 ) ∈ 𝑉 ) ) |
121 |
|
eleq1 |
⊢ ( 𝐶 = ( 𝑝 ‘ 2 ) → ( 𝐶 ∈ 𝑉 ↔ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) |
122 |
121
|
3ad2ant3 |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝐶 ∈ 𝑉 ↔ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) |
123 |
118 120 122
|
3anbi123d |
⊢ ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( ( 𝑝 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) ) |
124 |
123
|
3ad2ant3 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( ( 𝑝 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 1 ) ∈ 𝑉 ∧ ( 𝑝 ‘ 2 ) ∈ 𝑉 ) ) ) |
125 |
116 124
|
mpbird |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
126 |
94 125
|
jca |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 3 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) |
127 |
126
|
3exp |
⊢ ( 𝑝 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑝 ) = 3 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) ) |
128 |
127
|
adantr |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ( ♯ ‘ 𝑝 ) = 3 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) ) |
129 |
93 128
|
sylbid |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ( ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) ) |
130 |
129
|
impancom |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ♯ ‘ 𝑓 ) = 2 → ( ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) ) |
131 |
130
|
impd |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑝 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) |
132 |
91 77 131
|
syl2anc |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) ) |
133 |
132
|
imp |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ) |
134 |
|
eqwrds3 |
⊢ ( ( 𝑝 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) ) ) |
135 |
133 134
|
syl |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑝 ) = 3 ∧ ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 1 ) = 𝐵 ∧ ( 𝑝 ‘ 2 ) = 𝐶 ) ) ) ) |
136 |
90 135
|
mpbird |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
137 |
136
|
breq2d |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ↔ 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
138 |
137
|
biimpd |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
139 |
138
|
ex |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) |
140 |
139
|
pm2.43a |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 → ( ( ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
141 |
140
|
3impib |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
142 |
141
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
143 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( ♯ ‘ 𝑓 ) = 2 ) |
144 |
142 143
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
145 |
144
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
146 |
145
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
147 |
146
|
eximdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ∧ ( 𝐴 = ( 𝑝 ‘ 0 ) ∧ 𝐵 = ( 𝑝 ‘ 1 ) ∧ 𝐶 = ( 𝑝 ‘ 2 ) ) ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
148 |
76 147
|
syl5com |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
149 |
148
|
3expib |
⊢ ( 𝐺 ∈ UMGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
150 |
149
|
com23 |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
151 |
150
|
imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
152 |
75 151
|
impbid |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
153 |
9 152
|
bitrd |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |