| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uneq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ( ∅ ∪ ∅ ) ) |
| 2 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
| 3 |
1 2
|
eqtrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ∅ ) |
| 4 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 5 |
|
sseq2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝐴 ⊆ ∅ ) ) |
| 6 |
4 5
|
mpbii |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐴 ⊆ ∅ ) |
| 7 |
|
ss0b |
⊢ ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅ ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐴 = ∅ ) |
| 9 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 10 |
|
sseq2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝐵 ⊆ ∅ ) ) |
| 11 |
9 10
|
mpbii |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐵 ⊆ ∅ ) |
| 12 |
|
ss0b |
⊢ ( 𝐵 ⊆ ∅ ↔ 𝐵 = ∅ ) |
| 13 |
11 12
|
sylib |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐵 = ∅ ) |
| 14 |
8 13
|
jca |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) |
| 15 |
3 14
|
impbii |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( 𝐴 ∪ 𝐵 ) = ∅ ) |