Step |
Hyp |
Ref |
Expression |
1 |
|
uneq12 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ( ∅ ∪ ∅ ) ) |
2 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
3 |
1 2
|
eqtrdi |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ∪ 𝐵 ) = ∅ ) |
4 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
5 |
|
sseq2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝐴 ⊆ ∅ ) ) |
6 |
4 5
|
mpbii |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐴 ⊆ ∅ ) |
7 |
|
ss0b |
⊢ ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅ ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐴 = ∅ ) |
9 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
10 |
|
sseq2 |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝐵 ⊆ ∅ ) ) |
11 |
9 10
|
mpbii |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐵 ⊆ ∅ ) |
12 |
|
ss0b |
⊢ ( 𝐵 ⊆ ∅ ↔ 𝐵 = ∅ ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → 𝐵 = ∅ ) |
14 |
8 13
|
jca |
⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) |
15 |
3 14
|
impbii |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( 𝐴 ∪ 𝐵 ) = ∅ ) |