Metamath Proof Explorer


Theorem un01

Description: A unionizing deduction. (Contributed by Alan Sare, 28-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis un01.1 (    (      ,    𝜑    )    ▶    𝜓    )
Assertion un01 (    𝜑    ▶    𝜓    )

Proof

Step Hyp Ref Expression
1 un01.1 (    (      ,    𝜑    )    ▶    𝜓    )
2 tru
3 2 jctl ( 𝜑 → ( ⊤ ∧ 𝜑 ) )
4 1 dfvd2ani ( ( ⊤ ∧ 𝜑 ) → 𝜓 )
5 3 4 syl ( 𝜑𝜓 )
6 5 dfvd1ir (    𝜑    ▶    𝜓    )