Metamath Proof Explorer


Theorem un0addcl

Description: If S is closed under addition, then so is S u. { 0 } . (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Hypotheses un0addcl.1 ( 𝜑𝑆 ⊆ ℂ )
un0addcl.2 𝑇 = ( 𝑆 ∪ { 0 } )
un0addcl.3 ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑆 )
Assertion un0addcl ( ( 𝜑 ∧ ( 𝑀𝑇𝑁𝑇 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 un0addcl.1 ( 𝜑𝑆 ⊆ ℂ )
2 un0addcl.2 𝑇 = ( 𝑆 ∪ { 0 } )
3 un0addcl.3 ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑆 )
4 2 eleq2i ( 𝑁𝑇𝑁 ∈ ( 𝑆 ∪ { 0 } ) )
5 elun ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁𝑆𝑁 ∈ { 0 } ) )
6 4 5 bitri ( 𝑁𝑇 ↔ ( 𝑁𝑆𝑁 ∈ { 0 } ) )
7 2 eleq2i ( 𝑀𝑇𝑀 ∈ ( 𝑆 ∪ { 0 } ) )
8 elun ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀𝑆𝑀 ∈ { 0 } ) )
9 7 8 bitri ( 𝑀𝑇 ↔ ( 𝑀𝑆𝑀 ∈ { 0 } ) )
10 ssun1 𝑆 ⊆ ( 𝑆 ∪ { 0 } )
11 10 2 sseqtrri 𝑆𝑇
12 11 3 sseldi ( ( 𝜑 ∧ ( 𝑀𝑆𝑁𝑆 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 )
13 12 expr ( ( 𝜑𝑀𝑆 ) → ( 𝑁𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
14 1 sselda ( ( 𝜑𝑁𝑆 ) → 𝑁 ∈ ℂ )
15 14 addid2d ( ( 𝜑𝑁𝑆 ) → ( 0 + 𝑁 ) = 𝑁 )
16 11 a1i ( 𝜑𝑆𝑇 )
17 16 sselda ( ( 𝜑𝑁𝑆 ) → 𝑁𝑇 )
18 15 17 eqeltrd ( ( 𝜑𝑁𝑆 ) → ( 0 + 𝑁 ) ∈ 𝑇 )
19 elsni ( 𝑀 ∈ { 0 } → 𝑀 = 0 )
20 19 oveq1d ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 0 + 𝑁 ) )
21 20 eleq1d ( 𝑀 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 0 + 𝑁 ) ∈ 𝑇 ) )
22 18 21 syl5ibrcom ( ( 𝜑𝑁𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
23 22 impancom ( ( 𝜑𝑀 ∈ { 0 } ) → ( 𝑁𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
24 13 23 jaodan ( ( 𝜑 ∧ ( 𝑀𝑆𝑀 ∈ { 0 } ) ) → ( 𝑁𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
25 9 24 sylan2b ( ( 𝜑𝑀𝑇 ) → ( 𝑁𝑆 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
26 0cnd ( 𝜑 → 0 ∈ ℂ )
27 26 snssd ( 𝜑 → { 0 } ⊆ ℂ )
28 1 27 unssd ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ )
29 2 28 eqsstrid ( 𝜑𝑇 ⊆ ℂ )
30 29 sselda ( ( 𝜑𝑀𝑇 ) → 𝑀 ∈ ℂ )
31 30 addid1d ( ( 𝜑𝑀𝑇 ) → ( 𝑀 + 0 ) = 𝑀 )
32 simpr ( ( 𝜑𝑀𝑇 ) → 𝑀𝑇 )
33 31 32 eqeltrd ( ( 𝜑𝑀𝑇 ) → ( 𝑀 + 0 ) ∈ 𝑇 )
34 elsni ( 𝑁 ∈ { 0 } → 𝑁 = 0 )
35 34 oveq2d ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) )
36 35 eleq1d ( 𝑁 ∈ { 0 } → ( ( 𝑀 + 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 + 0 ) ∈ 𝑇 ) )
37 33 36 syl5ibrcom ( ( 𝜑𝑀𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
38 25 37 jaod ( ( 𝜑𝑀𝑇 ) → ( ( 𝑁𝑆𝑁 ∈ { 0 } ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
39 6 38 syl5bi ( ( 𝜑𝑀𝑇 ) → ( 𝑁𝑇 → ( 𝑀 + 𝑁 ) ∈ 𝑇 ) )
40 39 impr ( ( 𝜑 ∧ ( 𝑀𝑇𝑁𝑇 ) ) → ( 𝑀 + 𝑁 ) ∈ 𝑇 )