Step |
Hyp |
Ref |
Expression |
1 |
|
un0addcl.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
un0addcl.2 |
⊢ 𝑇 = ( 𝑆 ∪ { 0 } ) |
3 |
|
un0mulcl.3 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑆 ) |
4 |
2
|
eleq2i |
⊢ ( 𝑁 ∈ 𝑇 ↔ 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ) |
5 |
|
elun |
⊢ ( 𝑁 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝑁 ∈ 𝑇 ↔ ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) ) |
7 |
2
|
eleq2i |
⊢ ( 𝑀 ∈ 𝑇 ↔ 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ) |
8 |
|
elun |
⊢ ( 𝑀 ∈ ( 𝑆 ∪ { 0 } ) ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝑀 ∈ 𝑇 ↔ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) |
10 |
|
ssun1 |
⊢ 𝑆 ⊆ ( 𝑆 ∪ { 0 } ) |
11 |
10 2
|
sseqtrri |
⊢ 𝑆 ⊆ 𝑇 |
12 |
11 3
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) |
13 |
12
|
expr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑆 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
14 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → 𝑁 ∈ ℂ ) |
15 |
14
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 · 𝑁 ) = 0 ) |
16 |
|
ssun2 |
⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) |
17 |
16 2
|
sseqtrri |
⊢ { 0 } ⊆ 𝑇 |
18 |
|
c0ex |
⊢ 0 ∈ V |
19 |
18
|
snss |
⊢ ( 0 ∈ 𝑇 ↔ { 0 } ⊆ 𝑇 ) |
20 |
17 19
|
mpbir |
⊢ 0 ∈ 𝑇 |
21 |
15 20
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 0 · 𝑁 ) ∈ 𝑇 ) |
22 |
|
elsni |
⊢ ( 𝑀 ∈ { 0 } → 𝑀 = 0 ) |
23 |
22
|
oveq1d |
⊢ ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 0 · 𝑁 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑀 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 0 · 𝑁 ) ∈ 𝑇 ) ) |
25 |
21 24
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑆 ) → ( 𝑀 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
26 |
25
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ { 0 } ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
27 |
13 26
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑆 ∨ 𝑀 ∈ { 0 } ) ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
28 |
9 27
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑆 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
29 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
30 |
29
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
31 |
1 30
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
32 |
2 31
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ ℂ ) |
33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ∈ ℂ ) |
34 |
33
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 · 0 ) = 0 ) |
35 |
34 20
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑀 · 0 ) ∈ 𝑇 ) |
36 |
|
elsni |
⊢ ( 𝑁 ∈ { 0 } → 𝑁 = 0 ) |
37 |
36
|
oveq2d |
⊢ ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) = ( 𝑀 · 0 ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑁 ∈ { 0 } → ( ( 𝑀 · 𝑁 ) ∈ 𝑇 ↔ ( 𝑀 · 0 ) ∈ 𝑇 ) ) |
39 |
35 38
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ { 0 } → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
40 |
28 39
|
jaod |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( ( 𝑁 ∈ 𝑆 ∨ 𝑁 ∈ { 0 } ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
41 |
6 40
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑇 ) → ( 𝑁 ∈ 𝑇 → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) ) |
42 |
41
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) → ( 𝑀 · 𝑁 ) ∈ 𝑇 ) |