| Step | Hyp | Ref | Expression | 
						
							| 1 |  | un0addcl.1 | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 2 |  | un0addcl.2 | ⊢ 𝑇  =  ( 𝑆  ∪  { 0 } ) | 
						
							| 3 |  | un0mulcl.3 | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  𝑆  ∧  𝑁  ∈  𝑆 ) )  →  ( 𝑀  ·  𝑁 )  ∈  𝑆 ) | 
						
							| 4 | 2 | eleq2i | ⊢ ( 𝑁  ∈  𝑇  ↔  𝑁  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 5 |  | elun | ⊢ ( 𝑁  ∈  ( 𝑆  ∪  { 0 } )  ↔  ( 𝑁  ∈  𝑆  ∨  𝑁  ∈  { 0 } ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( 𝑁  ∈  𝑇  ↔  ( 𝑁  ∈  𝑆  ∨  𝑁  ∈  { 0 } ) ) | 
						
							| 7 | 2 | eleq2i | ⊢ ( 𝑀  ∈  𝑇  ↔  𝑀  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 8 |  | elun | ⊢ ( 𝑀  ∈  ( 𝑆  ∪  { 0 } )  ↔  ( 𝑀  ∈  𝑆  ∨  𝑀  ∈  { 0 } ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 𝑀  ∈  𝑇  ↔  ( 𝑀  ∈  𝑆  ∨  𝑀  ∈  { 0 } ) ) | 
						
							| 10 |  | ssun1 | ⊢ 𝑆  ⊆  ( 𝑆  ∪  { 0 } ) | 
						
							| 11 | 10 2 | sseqtrri | ⊢ 𝑆  ⊆  𝑇 | 
						
							| 12 | 11 3 | sselid | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  𝑆  ∧  𝑁  ∈  𝑆 ) )  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) | 
						
							| 13 | 12 | expr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑆 )  →  ( 𝑁  ∈  𝑆  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 14 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑆 )  →  𝑁  ∈  ℂ ) | 
						
							| 15 | 14 | mul02d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑆 )  →  ( 0  ·  𝑁 )  =  0 ) | 
						
							| 16 |  | ssun2 | ⊢ { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) | 
						
							| 17 | 16 2 | sseqtrri | ⊢ { 0 }  ⊆  𝑇 | 
						
							| 18 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 19 | 18 | snss | ⊢ ( 0  ∈  𝑇  ↔  { 0 }  ⊆  𝑇 ) | 
						
							| 20 | 17 19 | mpbir | ⊢ 0  ∈  𝑇 | 
						
							| 21 | 15 20 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑆 )  →  ( 0  ·  𝑁 )  ∈  𝑇 ) | 
						
							| 22 |  | elsni | ⊢ ( 𝑀  ∈  { 0 }  →  𝑀  =  0 ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑀  ∈  { 0 }  →  ( 𝑀  ·  𝑁 )  =  ( 0  ·  𝑁 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑀  ∈  { 0 }  →  ( ( 𝑀  ·  𝑁 )  ∈  𝑇  ↔  ( 0  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 25 | 21 24 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑁  ∈  𝑆 )  →  ( 𝑀  ∈  { 0 }  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 26 | 25 | impancom | ⊢ ( ( 𝜑  ∧  𝑀  ∈  { 0 } )  →  ( 𝑁  ∈  𝑆  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 27 | 13 26 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  𝑆  ∨  𝑀  ∈  { 0 } ) )  →  ( 𝑁  ∈  𝑆  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 28 | 9 27 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( 𝑁  ∈  𝑆  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 29 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 30 | 29 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ℂ ) | 
						
							| 31 | 1 30 | unssd | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 32 | 2 31 | eqsstrid | ⊢ ( 𝜑  →  𝑇  ⊆  ℂ ) | 
						
							| 33 | 32 | sselda | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  𝑀  ∈  ℂ ) | 
						
							| 34 | 33 | mul01d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( 𝑀  ·  0 )  =  0 ) | 
						
							| 35 | 34 20 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( 𝑀  ·  0 )  ∈  𝑇 ) | 
						
							| 36 |  | elsni | ⊢ ( 𝑁  ∈  { 0 }  →  𝑁  =  0 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑁  ∈  { 0 }  →  ( 𝑀  ·  𝑁 )  =  ( 𝑀  ·  0 ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑁  ∈  { 0 }  →  ( ( 𝑀  ·  𝑁 )  ∈  𝑇  ↔  ( 𝑀  ·  0 )  ∈  𝑇 ) ) | 
						
							| 39 | 35 38 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( 𝑁  ∈  { 0 }  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 40 | 28 39 | jaod | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( ( 𝑁  ∈  𝑆  ∨  𝑁  ∈  { 0 } )  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 41 | 6 40 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  𝑇 )  →  ( 𝑁  ∈  𝑇  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) ) | 
						
							| 42 | 41 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  𝑇  ∧  𝑁  ∈  𝑇 ) )  →  ( 𝑀  ·  𝑁 )  ∈  𝑇 ) |