Metamath Proof Explorer


Theorem un12

Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004)

Ref Expression
Assertion un12 ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( 𝐵 ∪ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 uncom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
2 1 uneq1i ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( ( 𝐵𝐴 ) ∪ 𝐶 )
3 unass ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )
4 unass ( ( 𝐵𝐴 ) ∪ 𝐶 ) = ( 𝐵 ∪ ( 𝐴𝐶 ) )
5 2 3 4 3eqtr3i ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( 𝐵 ∪ ( 𝐴𝐶 ) )