Metamath Proof Explorer


Theorem unab

Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unab ( { 𝑥𝜑 } ∪ { 𝑥𝜓 } ) = { 𝑥 ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 sbor ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) )
2 df-clab ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
3 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
4 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
5 3 4 orbi12i ( ( 𝑦 ∈ { 𝑥𝜑 } ∨ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) )
6 1 2 5 3bitr4ri ( ( 𝑦 ∈ { 𝑥𝜑 } ∨ 𝑦 ∈ { 𝑥𝜓 } ) ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑𝜓 ) } )
7 6 uneqri ( { 𝑥𝜑 } ∪ { 𝑥𝜓 } ) = { 𝑥 ∣ ( 𝜑𝜓 ) }