Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unab | ⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝜑 ∨ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbor | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 2 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∨ 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 5 | 3 4 | orbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∨ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 6 | 1 2 5 | 3bitr4ri | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∨ 𝜓 ) } ) |
| 7 | 6 | uneqri | ⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝜑 ∨ 𝜓 ) } |