Step |
Hyp |
Ref |
Expression |
1 |
|
unabw.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
unabw.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
df-un |
⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) } |
4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
5 |
1
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
6 |
4 5
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) |
7 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
8 |
2
|
sbievw |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜃 ) |
9 |
7 8
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜃 ) |
10 |
6 9
|
orbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝜒 ∨ 𝜃 ) ) |
11 |
10
|
abbii |
⊢ { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∨ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) } = { 𝑦 ∣ ( 𝜒 ∨ 𝜃 ) } |
12 |
3 11
|
eqtri |
⊢ ( { 𝑥 ∣ 𝜑 } ∪ { 𝑥 ∣ 𝜓 } ) = { 𝑦 ∣ ( 𝜒 ∨ 𝜃 ) } |