Metamath Proof Explorer


Theorem unass

Description: Associative law for union of classes. Exercise 8 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unass ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
2 elun ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
3 2 orbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴 ∨ ( 𝑥𝐵𝑥𝐶 ) ) )
4 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
5 4 orbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥𝐶 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∨ 𝑥𝐶 ) )
6 orass ( ( ( 𝑥𝐴𝑥𝐵 ) ∨ 𝑥𝐶 ) ↔ ( 𝑥𝐴 ∨ ( 𝑥𝐵𝑥𝐶 ) ) )
7 5 6 bitr2i ( ( 𝑥𝐴 ∨ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥𝐶 ) )
8 1 3 7 3bitrri ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥𝐶 ) ↔ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵𝐶 ) ) )
9 8 uneqri ( ( 𝐴𝐵 ) ∪ 𝐶 ) = ( 𝐴 ∪ ( 𝐵𝐶 ) )