Description: An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005) (Revised by Mario Carneiro, 15-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | unben | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) | |
2 | 1 | unbenlem | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ω ) |
3 | nnenom | ⊢ ℕ ≈ ω | |
4 | 3 | ensymi | ⊢ ω ≈ ℕ |
5 | entr | ⊢ ( ( 𝐴 ≈ ω ∧ ω ≈ ℕ ) → 𝐴 ≈ ℕ ) | |
6 | 2 4 5 | sylancl | ⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ ) |