Metamath Proof Explorer


Theorem unben

Description: An unbounded set of positive integers is infinite. (Contributed by NM, 5-May-2005) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion unben ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ )

Proof

Step Hyp Ref Expression
1 eqid ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω )
2 1 unbenlem ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ω )
3 nnenom ℕ ≈ ω
4 3 ensymi ω ≈ ℕ
5 entr ( ( 𝐴 ≈ ω ∧ ω ≈ ℕ ) → 𝐴 ≈ ℕ )
6 2 4 5 sylancl ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ℕ )