| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unbenlem.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 2 |
|
nnex |
⊢ ℕ ∈ V |
| 3 |
2
|
ssex |
⊢ ( 𝐴 ⊆ ℕ → 𝐴 ∈ V ) |
| 4 |
|
1z |
⊢ 1 ∈ ℤ |
| 5 |
4 1
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) |
| 6 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 7 |
|
f1oeq3 |
⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( 𝐺 : ω –1-1-onto→ ℕ ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) ) |
| 9 |
5 8
|
mpbir |
⊢ 𝐺 : ω –1-1-onto→ ℕ |
| 10 |
|
f1ocnv |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → ◡ 𝐺 : ℕ –1-1-onto→ ω ) |
| 11 |
|
f1of1 |
⊢ ( ◡ 𝐺 : ℕ –1-1-onto→ ω → ◡ 𝐺 : ℕ –1-1→ ω ) |
| 12 |
9 10 11
|
mp2b |
⊢ ◡ 𝐺 : ℕ –1-1→ ω |
| 13 |
|
f1ores |
⊢ ( ( ◡ 𝐺 : ℕ –1-1→ ω ∧ 𝐴 ⊆ ℕ ) → ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) |
| 14 |
12 13
|
mpan |
⊢ ( 𝐴 ⊆ ℕ → ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) |
| 15 |
|
f1oeng |
⊢ ( ( 𝐴 ∈ V ∧ ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
| 16 |
3 14 15
|
syl2anc |
⊢ ( 𝐴 ⊆ ℕ → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
| 18 |
|
imassrn |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ ran ◡ 𝐺 |
| 19 |
|
dfdm4 |
⊢ dom 𝐺 = ran ◡ 𝐺 |
| 20 |
|
f1of |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → 𝐺 : ω ⟶ ℕ ) |
| 21 |
9 20
|
ax-mp |
⊢ 𝐺 : ω ⟶ ℕ |
| 22 |
21
|
fdmi |
⊢ dom 𝐺 = ω |
| 23 |
19 22
|
eqtr3i |
⊢ ran ◡ 𝐺 = ω |
| 24 |
18 23
|
sseqtri |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ ω |
| 25 |
4 1
|
om2uzuzi |
⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 |
25 6
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℕ ) |
| 27 |
|
breq1 |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑦 ) → ( 𝑚 < 𝑛 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑦 ) → ( ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 29 |
28
|
rspcv |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 30 |
26 29
|
syl |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 32 |
|
f1ocnv |
⊢ ( ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) → ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 33 |
14 32
|
syl |
⊢ ( 𝐴 ⊆ ℕ → ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 34 |
|
f1ofun |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → Fun 𝐺 ) |
| 35 |
9 34
|
ax-mp |
⊢ Fun 𝐺 |
| 36 |
|
funcnvres2 |
⊢ ( Fun 𝐺 → ◡ ( ◡ 𝐺 ↾ 𝐴 ) = ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ) |
| 37 |
|
f1oeq1 |
⊢ ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) = ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) → ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) ) |
| 38 |
35 36 37
|
mp2b |
⊢ ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 39 |
33 38
|
sylib |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 40 |
|
f1ofo |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –onto→ 𝐴 ) |
| 41 |
|
forn |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –onto→ 𝐴 → ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
| 43 |
42
|
eleq2d |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ 𝑛 ∈ 𝐴 ) ) |
| 44 |
|
f1ofn |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) Fn ( ◡ 𝐺 “ 𝐴 ) ) |
| 45 |
|
fvelrnb |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) Fn ( ◡ 𝐺 “ 𝐴 ) → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
| 47 |
43 46
|
bitr3d |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ 𝐴 ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
| 48 |
39 47
|
syl |
⊢ ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
| 49 |
48
|
biimpa |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) |
| 50 |
|
fvres |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 51 |
50
|
eqeq1d |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ↔ ( 𝐺 ‘ 𝑚 ) = 𝑛 ) ) |
| 52 |
51
|
biimpa |
⊢ ( ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝐺 ‘ 𝑚 ) = 𝑛 ) |
| 53 |
52
|
adantll |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝐺 ‘ 𝑚 ) = 𝑛 ) |
| 54 |
24
|
sseli |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → 𝑚 ∈ ω ) |
| 55 |
4 1
|
om2uzlt2i |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ) ) |
| 56 |
54 55
|
sylan2 |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ) ) |
| 57 |
|
breq2 |
⊢ ( ( 𝐺 ‘ 𝑚 ) = 𝑛 → ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 58 |
56 57
|
sylan9bb |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑚 ) = 𝑛 ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 59 |
53 58
|
syldan |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
| 60 |
59
|
biimparc |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) → 𝑦 ∈ 𝑚 ) |
| 61 |
60
|
exp44 |
⊢ ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ( 𝑦 ∈ ω → ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → 𝑦 ∈ 𝑚 ) ) ) ) |
| 62 |
61
|
imp31 |
⊢ ( ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → 𝑦 ∈ 𝑚 ) ) |
| 63 |
62
|
reximdva |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
| 64 |
49 63
|
syl5 |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
| 65 |
64
|
exp4b |
⊢ ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) ) |
| 66 |
65
|
com4l |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) ) |
| 67 |
66
|
imp |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( 𝑛 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
| 68 |
67
|
rexlimdv |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
| 69 |
31 68
|
syld |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
| 70 |
69
|
ex |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
| 71 |
70
|
com3l |
⊢ ( 𝐴 ⊆ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ( 𝑦 ∈ ω → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
| 72 |
71
|
imp |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ( 𝑦 ∈ ω → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
| 73 |
72
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ∀ 𝑦 ∈ ω ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) |
| 74 |
|
unbnn3 |
⊢ ( ( ( ◡ 𝐺 “ 𝐴 ) ⊆ ω ∧ ∀ 𝑦 ∈ ω ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) → ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) |
| 75 |
24 73 74
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) |
| 76 |
|
entr |
⊢ ( ( 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ∧ ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) → 𝐴 ≈ ω ) |
| 77 |
17 75 76
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ω ) |