Step |
Hyp |
Ref |
Expression |
1 |
|
unbenlem.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
2 |
|
nnex |
⊢ ℕ ∈ V |
3 |
2
|
ssex |
⊢ ( 𝐴 ⊆ ℕ → 𝐴 ∈ V ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
4 1
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) |
6 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
7 |
|
f1oeq3 |
⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( 𝐺 : ω –1-1-onto→ ℕ ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 1 ) ) |
9 |
5 8
|
mpbir |
⊢ 𝐺 : ω –1-1-onto→ ℕ |
10 |
|
f1ocnv |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → ◡ 𝐺 : ℕ –1-1-onto→ ω ) |
11 |
|
f1of1 |
⊢ ( ◡ 𝐺 : ℕ –1-1-onto→ ω → ◡ 𝐺 : ℕ –1-1→ ω ) |
12 |
9 10 11
|
mp2b |
⊢ ◡ 𝐺 : ℕ –1-1→ ω |
13 |
|
f1ores |
⊢ ( ( ◡ 𝐺 : ℕ –1-1→ ω ∧ 𝐴 ⊆ ℕ ) → ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) |
14 |
12 13
|
mpan |
⊢ ( 𝐴 ⊆ ℕ → ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) |
15 |
|
f1oeng |
⊢ ( ( 𝐴 ∈ V ∧ ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) ) → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
16 |
3 14 15
|
syl2anc |
⊢ ( 𝐴 ⊆ ℕ → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ) |
18 |
|
imassrn |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ ran ◡ 𝐺 |
19 |
|
dfdm4 |
⊢ dom 𝐺 = ran ◡ 𝐺 |
20 |
|
f1of |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → 𝐺 : ω ⟶ ℕ ) |
21 |
9 20
|
ax-mp |
⊢ 𝐺 : ω ⟶ ℕ |
22 |
21
|
fdmi |
⊢ dom 𝐺 = ω |
23 |
19 22
|
eqtr3i |
⊢ ran ◡ 𝐺 = ω |
24 |
18 23
|
sseqtri |
⊢ ( ◡ 𝐺 “ 𝐴 ) ⊆ ω |
25 |
4 1
|
om2uzuzi |
⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
25 6
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℕ ) |
27 |
|
breq1 |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑦 ) → ( 𝑚 < 𝑛 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑚 = ( 𝐺 ‘ 𝑦 ) → ( ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
29 |
28
|
rspcv |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
30 |
26 29
|
syl |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
32 |
|
f1ocnv |
⊢ ( ( ◡ 𝐺 ↾ 𝐴 ) : 𝐴 –1-1-onto→ ( ◡ 𝐺 “ 𝐴 ) → ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
33 |
14 32
|
syl |
⊢ ( 𝐴 ⊆ ℕ → ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
34 |
|
f1ofun |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ → Fun 𝐺 ) |
35 |
9 34
|
ax-mp |
⊢ Fun 𝐺 |
36 |
|
funcnvres2 |
⊢ ( Fun 𝐺 → ◡ ( ◡ 𝐺 ↾ 𝐴 ) = ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ) |
37 |
|
f1oeq1 |
⊢ ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) = ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) → ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) ) |
38 |
35 36 37
|
mp2b |
⊢ ( ◡ ( ◡ 𝐺 ↾ 𝐴 ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
39 |
33 38
|
sylib |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
40 |
|
f1ofo |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –onto→ 𝐴 ) |
41 |
|
forn |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –onto→ 𝐴 → ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
42 |
40 41
|
syl |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) = 𝐴 ) |
43 |
42
|
eleq2d |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ 𝑛 ∈ 𝐴 ) ) |
44 |
|
f1ofn |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) Fn ( ◡ 𝐺 “ 𝐴 ) ) |
45 |
|
fvelrnb |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) Fn ( ◡ 𝐺 “ 𝐴 ) → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
46 |
44 45
|
syl |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ ran ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
47 |
43 46
|
bitr3d |
⊢ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) : ( ◡ 𝐺 “ 𝐴 ) –1-1-onto→ 𝐴 → ( 𝑛 ∈ 𝐴 ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
48 |
39 47
|
syl |
⊢ ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 ↔ ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) |
49 |
48
|
biimpa |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) |
50 |
|
fvres |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
51 |
50
|
eqeq1d |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ↔ ( 𝐺 ‘ 𝑚 ) = 𝑛 ) ) |
52 |
51
|
biimpa |
⊢ ( ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝐺 ‘ 𝑚 ) = 𝑛 ) |
53 |
52
|
adantll |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝐺 ‘ 𝑚 ) = 𝑛 ) |
54 |
24
|
sseli |
⊢ ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → 𝑚 ∈ ω ) |
55 |
4 1
|
om2uzlt2i |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ) ) |
56 |
54 55
|
sylan2 |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ) ) |
57 |
|
breq2 |
⊢ ( ( 𝐺 ‘ 𝑚 ) = 𝑛 → ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
58 |
56 57
|
sylan9bb |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑚 ) = 𝑛 ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
59 |
53 58
|
syldan |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) → ( 𝑦 ∈ 𝑚 ↔ ( 𝐺 ‘ 𝑦 ) < 𝑛 ) ) |
60 |
59
|
biimparc |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ ( ( 𝑦 ∈ ω ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) ∧ ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 ) ) → 𝑦 ∈ 𝑚 ) |
61 |
60
|
exp44 |
⊢ ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ( 𝑦 ∈ ω → ( 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → 𝑦 ∈ 𝑚 ) ) ) ) |
62 |
61
|
imp31 |
⊢ ( ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) ∧ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ) → ( ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → 𝑦 ∈ 𝑚 ) ) |
63 |
62
|
reximdva |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) → ( ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) ( ( 𝐺 ↾ ( ◡ 𝐺 “ 𝐴 ) ) ‘ 𝑚 ) = 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
64 |
49 63
|
syl5 |
⊢ ( ( ( 𝐺 ‘ 𝑦 ) < 𝑛 ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
65 |
64
|
exp4b |
⊢ ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) ) |
66 |
65
|
com4l |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( 𝑛 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) ) |
67 |
66
|
imp |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( 𝑛 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
68 |
67
|
rexlimdv |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∃ 𝑛 ∈ 𝐴 ( 𝐺 ‘ 𝑦 ) < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
69 |
31 68
|
syld |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ ) → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
70 |
69
|
ex |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ⊆ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
71 |
70
|
com3l |
⊢ ( 𝐴 ⊆ ℕ → ( ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 → ( 𝑦 ∈ ω → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) ) |
72 |
71
|
imp |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ( 𝑦 ∈ ω → ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) ) |
73 |
72
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ∀ 𝑦 ∈ ω ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) |
74 |
|
unbnn3 |
⊢ ( ( ( ◡ 𝐺 “ 𝐴 ) ⊆ ω ∧ ∀ 𝑦 ∈ ω ∃ 𝑚 ∈ ( ◡ 𝐺 “ 𝐴 ) 𝑦 ∈ 𝑚 ) → ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) |
75 |
24 73 74
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) |
76 |
|
entr |
⊢ ( ( 𝐴 ≈ ( ◡ 𝐺 “ 𝐴 ) ∧ ( ◡ 𝐺 “ 𝐴 ) ≈ ω ) → 𝐴 ≈ ω ) |
77 |
17 75 76
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℕ ∧ ∀ 𝑚 ∈ ℕ ∃ 𝑛 ∈ 𝐴 𝑚 < 𝑛 ) → 𝐴 ≈ ω ) |