| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 2 |  | sstr | ⊢ ( ( 𝐵  ⊆  ω  ∧  ω  ⊆  On )  →  𝐵  ⊆  On ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐵  ⊆  ω  →  𝐵  ⊆  On ) | 
						
							| 4 | 3 | ssdifssd | ⊢ ( 𝐵  ⊆  ω  →  ( 𝐵  ∖  suc  𝐴 )  ⊆  On ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐵  ⊆  ω  ∧  ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  ∖  suc  𝐴 )  ⊆  On ) | 
						
							| 6 |  | ssel | ⊢ ( 𝐵  ⊆  ω  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  ω ) ) | 
						
							| 7 |  | peano2b | ⊢ ( 𝐴  ∈  ω  ↔  suc  𝐴  ∈  ω ) | 
						
							| 8 | 6 7 | imbitrdi | ⊢ ( 𝐵  ⊆  ω  →  ( 𝐴  ∈  𝐵  →  suc  𝐴  ∈  ω ) ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑥  =  suc  𝐴  →  ( 𝑥  ∈  𝑦  ↔  suc  𝐴  ∈  𝑦 ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑥  =  suc  𝐴  →  ( ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦  ↔  ∃ 𝑦  ∈  𝐵 suc  𝐴  ∈  𝑦 ) ) | 
						
							| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦  ∧  suc  𝐴  ∈  ω )  →  ∃ 𝑦  ∈  𝐵 suc  𝐴  ∈  𝑦 ) | 
						
							| 12 |  | ssel | ⊢ ( 𝐵  ⊆  ω  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  ω ) ) | 
						
							| 13 |  | nnord | ⊢ ( 𝑦  ∈  ω  →  Ord  𝑦 ) | 
						
							| 14 |  | ordn2lp | ⊢ ( Ord  𝑦  →  ¬  ( 𝑦  ∈  suc  𝐴  ∧  suc  𝐴  ∈  𝑦 ) ) | 
						
							| 15 |  | imnan | ⊢ ( ( 𝑦  ∈  suc  𝐴  →  ¬  suc  𝐴  ∈  𝑦 )  ↔  ¬  ( 𝑦  ∈  suc  𝐴  ∧  suc  𝐴  ∈  𝑦 ) ) | 
						
							| 16 | 14 15 | sylibr | ⊢ ( Ord  𝑦  →  ( 𝑦  ∈  suc  𝐴  →  ¬  suc  𝐴  ∈  𝑦 ) ) | 
						
							| 17 | 16 | con2d | ⊢ ( Ord  𝑦  →  ( suc  𝐴  ∈  𝑦  →  ¬  𝑦  ∈  suc  𝐴 ) ) | 
						
							| 18 | 13 17 | syl | ⊢ ( 𝑦  ∈  ω  →  ( suc  𝐴  ∈  𝑦  →  ¬  𝑦  ∈  suc  𝐴 ) ) | 
						
							| 19 | 12 18 | syl6 | ⊢ ( 𝐵  ⊆  ω  →  ( 𝑦  ∈  𝐵  →  ( suc  𝐴  ∈  𝑦  →  ¬  𝑦  ∈  suc  𝐴 ) ) ) | 
						
							| 20 | 19 | imdistand | ⊢ ( 𝐵  ⊆  ω  →  ( ( 𝑦  ∈  𝐵  ∧  suc  𝐴  ∈  𝑦 )  →  ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  suc  𝐴 ) ) ) | 
						
							| 21 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  suc  𝐴 )  ↔  ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  suc  𝐴 ) ) | 
						
							| 22 |  | ne0i | ⊢ ( 𝑦  ∈  ( 𝐵  ∖  suc  𝐴 )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) | 
						
							| 23 | 21 22 | sylbir | ⊢ ( ( 𝑦  ∈  𝐵  ∧  ¬  𝑦  ∈  suc  𝐴 )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) | 
						
							| 24 | 20 23 | syl6 | ⊢ ( 𝐵  ⊆  ω  →  ( ( 𝑦  ∈  𝐵  ∧  suc  𝐴  ∈  𝑦 )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) ) | 
						
							| 25 | 24 | expd | ⊢ ( 𝐵  ⊆  ω  →  ( 𝑦  ∈  𝐵  →  ( suc  𝐴  ∈  𝑦  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) ) ) | 
						
							| 26 | 25 | rexlimdv | ⊢ ( 𝐵  ⊆  ω  →  ( ∃ 𝑦  ∈  𝐵 suc  𝐴  ∈  𝑦  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) ) | 
						
							| 27 | 11 26 | syl5 | ⊢ ( 𝐵  ⊆  ω  →  ( ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦  ∧  suc  𝐴  ∈  ω )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) ) | 
						
							| 28 | 8 27 | sylan2d | ⊢ ( 𝐵  ⊆  ω  →  ( ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) ) | 
						
							| 29 | 28 | impl | ⊢ ( ( ( 𝐵  ⊆  ω  ∧  ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ ) | 
						
							| 30 |  | onint | ⊢ ( ( ( 𝐵  ∖  suc  𝐴 )  ⊆  On  ∧  ( 𝐵  ∖  suc  𝐴 )  ≠  ∅ )  →  ∩  ( 𝐵  ∖  suc  𝐴 )  ∈  ( 𝐵  ∖  suc  𝐴 ) ) | 
						
							| 31 | 5 29 30 | syl2anc | ⊢ ( ( ( 𝐵  ⊆  ω  ∧  ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦 )  ∧  𝐴  ∈  𝐵 )  →  ∩  ( 𝐵  ∖  suc  𝐴 )  ∈  ( 𝐵  ∖  suc  𝐴 ) ) | 
						
							| 32 | 31 | eldifad | ⊢ ( ( ( 𝐵  ⊆  ω  ∧  ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐵 𝑥  ∈  𝑦 )  ∧  𝐴  ∈  𝐵 )  →  ∩  ( 𝐵  ∖  suc  𝐴 )  ∈  𝐵 ) |