Step |
Hyp |
Ref |
Expression |
1 |
|
omsson |
⊢ ω ⊆ On |
2 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ω ∧ ω ⊆ On ) → 𝐵 ⊆ On ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐵 ⊆ ω → 𝐵 ⊆ On ) |
4 |
3
|
ssdifssd |
⊢ ( 𝐵 ⊆ ω → ( 𝐵 ∖ suc 𝐴 ) ⊆ On ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ⊆ On ) |
6 |
|
ssel |
⊢ ( 𝐵 ⊆ ω → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ω ) ) |
7 |
|
peano2b |
⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) |
8 |
6 7
|
syl6ib |
⊢ ( 𝐵 ⊆ ω → ( 𝐴 ∈ 𝐵 → suc 𝐴 ∈ ω ) ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝐴 → ( 𝑥 ∈ 𝑦 ↔ suc 𝐴 ∈ 𝑦 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑥 = suc 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ suc 𝐴 ∈ ω ) → ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 ) |
12 |
|
ssel |
⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ω ) ) |
13 |
|
nnord |
⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) |
14 |
|
ordn2lp |
⊢ ( Ord 𝑦 → ¬ ( 𝑦 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝑦 ) ) |
15 |
|
imnan |
⊢ ( ( 𝑦 ∈ suc 𝐴 → ¬ suc 𝐴 ∈ 𝑦 ) ↔ ¬ ( 𝑦 ∈ suc 𝐴 ∧ suc 𝐴 ∈ 𝑦 ) ) |
16 |
14 15
|
sylibr |
⊢ ( Ord 𝑦 → ( 𝑦 ∈ suc 𝐴 → ¬ suc 𝐴 ∈ 𝑦 ) ) |
17 |
16
|
con2d |
⊢ ( Ord 𝑦 → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) |
18 |
13 17
|
syl |
⊢ ( 𝑦 ∈ ω → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) |
19 |
12 18
|
syl6 |
⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → ( suc 𝐴 ∈ 𝑦 → ¬ 𝑦 ∈ suc 𝐴 ) ) ) |
20 |
19
|
imdistand |
⊢ ( 𝐵 ⊆ ω → ( ( 𝑦 ∈ 𝐵 ∧ suc 𝐴 ∈ 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) ) ) |
21 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ suc 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) ) |
22 |
|
ne0i |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ suc 𝐴 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) |
23 |
21 22
|
sylbir |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ suc 𝐴 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) |
24 |
20 23
|
syl6 |
⊢ ( 𝐵 ⊆ ω → ( ( 𝑦 ∈ 𝐵 ∧ suc 𝐴 ∈ 𝑦 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
25 |
24
|
expd |
⊢ ( 𝐵 ⊆ ω → ( 𝑦 ∈ 𝐵 → ( suc 𝐴 ∈ 𝑦 → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) ) |
26 |
25
|
rexlimdv |
⊢ ( 𝐵 ⊆ ω → ( ∃ 𝑦 ∈ 𝐵 suc 𝐴 ∈ 𝑦 → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
27 |
11 26
|
syl5 |
⊢ ( 𝐵 ⊆ ω → ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ suc 𝐴 ∈ ω ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
28 |
8 27
|
sylan2d |
⊢ ( 𝐵 ⊆ ω → ( ( ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) ) |
29 |
28
|
impl |
⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) |
30 |
|
onint |
⊢ ( ( ( 𝐵 ∖ suc 𝐴 ) ⊆ On ∧ ( 𝐵 ∖ suc 𝐴 ) ≠ ∅ ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ ( 𝐵 ∖ suc 𝐴 ) ) |
31 |
5 29 30
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ ( 𝐵 ∖ suc 𝐴 ) ) |
32 |
31
|
eldifad |
⊢ ( ( ( 𝐵 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∩ ( 𝐵 ∖ suc 𝐴 ) ∈ 𝐵 ) |