| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unblem.2 | ⊢ 𝐹  =  ( rec ( ( 𝑥  ∈  V  ↦  ∩  ( 𝐴  ∖  suc  𝑥 ) ) ,  ∩  𝐴 )  ↾  ω ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑧  =  ∅  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  ↔  ( 𝐹 ‘ ∅ )  ∈  𝐴 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑧  =  𝑢  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑧  =  𝑢  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  ↔  ( 𝐹 ‘ 𝑢 )  ∈  𝐴 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑢  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑧  =  suc  𝑢  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝐴  ↔  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) | 
						
							| 8 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 9 |  | sstr | ⊢ ( ( 𝐴  ⊆  ω  ∧  ω  ⊆  On )  →  𝐴  ⊆  On ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝐴  ⊆  ω  →  𝐴  ⊆  On ) | 
						
							| 11 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤  ∈  𝑣  ↔  ∅  ∈  𝑣 ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑤  =  ∅  →  ( ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  ↔  ∃ 𝑣  ∈  𝐴 ∅  ∈  𝑣 ) ) | 
						
							| 14 | 13 | rspcv | ⊢ ( ∅  ∈  ω  →  ( ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  →  ∃ 𝑣  ∈  𝐴 ∅  ∈  𝑣 ) ) | 
						
							| 15 | 11 14 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  →  ∃ 𝑣  ∈  𝐴 ∅  ∈  𝑣 ) | 
						
							| 16 |  | df-rex | ⊢ ( ∃ 𝑣  ∈  𝐴 ∅  ∈  𝑣  ↔  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∅  ∈  𝑣 ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  →  ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∅  ∈  𝑣 ) ) | 
						
							| 18 |  | exsimpl | ⊢ ( ∃ 𝑣 ( 𝑣  ∈  𝐴  ∧  ∅  ∈  𝑣 )  →  ∃ 𝑣 𝑣  ∈  𝐴 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  →  ∃ 𝑣 𝑣  ∈  𝐴 ) | 
						
							| 20 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑣 𝑣  ∈  𝐴 ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣  →  𝐴  ≠  ∅ ) | 
						
							| 22 |  | onint | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ≠  ∅ )  →  ∩  𝐴  ∈  𝐴 ) | 
						
							| 23 | 10 21 22 | syl2an | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ∩  𝐴  ∈  𝐴 ) | 
						
							| 24 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ )  =  ( ( rec ( ( 𝑥  ∈  V  ↦  ∩  ( 𝐴  ∖  suc  𝑥 ) ) ,  ∩  𝐴 )  ↾  ω ) ‘ ∅ ) | 
						
							| 25 |  | fr0g | ⊢ ( ∩  𝐴  ∈  𝐴  →  ( ( rec ( ( 𝑥  ∈  V  ↦  ∩  ( 𝐴  ∖  suc  𝑥 ) ) ,  ∩  𝐴 )  ↾  ω ) ‘ ∅ )  =  ∩  𝐴 ) | 
						
							| 26 | 24 25 | eqtr2id | ⊢ ( ∩  𝐴  ∈  𝐴  →  ∩  𝐴  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( ∩  𝐴  ∈  𝐴  →  ( ∩  𝐴  ∈  𝐴  ↔  ( 𝐹 ‘ ∅ )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | ibi | ⊢ ( ∩  𝐴  ∈  𝐴  →  ( 𝐹 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 29 | 23 28 | syl | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝐹 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 30 |  | unblem1 | ⊢ ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝐴 )  →  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴 ) | 
						
							| 31 |  | suceq | ⊢ ( 𝑦  =  𝑥  →  suc  𝑦  =  suc  𝑥 ) | 
						
							| 32 | 31 | difeq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝐴  ∖  suc  𝑦 )  =  ( 𝐴  ∖  suc  𝑥 ) ) | 
						
							| 33 | 32 | inteqd | ⊢ ( 𝑦  =  𝑥  →  ∩  ( 𝐴  ∖  suc  𝑦 )  =  ∩  ( 𝐴  ∖  suc  𝑥 ) ) | 
						
							| 34 |  | suceq | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑢 )  →  suc  𝑦  =  suc  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 35 | 34 | difeq2d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑢 )  →  ( 𝐴  ∖  suc  𝑦 )  =  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 36 | 35 | inteqd | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑢 )  →  ∩  ( 𝐴  ∖  suc  𝑦 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 37 | 1 33 36 | frsucmpt2 | ⊢ ( ( 𝑢  ∈  ω  ∧  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴 )  →  ( 𝐹 ‘ suc  𝑢 )  =  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 38 | 37 | eqcomd | ⊢ ( ( 𝑢  ∈  ω  ∧  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴 )  →  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( ( 𝑢  ∈  ω  ∧  ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴 )  →  ( ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴  ↔  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝑢  ∈  ω  →  ( ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴  →  ( ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴  ↔  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) ) | 
						
							| 41 | 40 | ibd | ⊢ ( 𝑢  ∈  ω  →  ( ∩  ( 𝐴  ∖  suc  ( 𝐹 ‘ 𝑢 ) )  ∈  𝐴  →  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) | 
						
							| 42 | 30 41 | syl5 | ⊢ ( 𝑢  ∈  ω  →  ( ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  ∧  ( 𝐹 ‘ 𝑢 )  ∈  𝐴 )  →  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) | 
						
							| 43 | 42 | expd | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( ( 𝐹 ‘ 𝑢 )  ∈  𝐴  →  ( 𝐹 ‘ suc  𝑢 )  ∈  𝐴 ) ) ) | 
						
							| 44 | 3 5 7 29 43 | finds2 | ⊢ ( 𝑧  ∈  ω  →  ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐴 ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( ( 𝐴  ⊆  ω  ∧  ∀ 𝑤  ∈  ω ∃ 𝑣  ∈  𝐴 𝑤  ∈  𝑣 )  →  ( 𝑧  ∈  ω  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐴 ) ) |