Metamath Proof Explorer


Theorem unblem3

Description: Lemma for unbnn . The value of the function F is less than its value at a successor. (Contributed by NM, 3-Dec-2003)

Ref Expression
Hypothesis unblem.2 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝐴 ∖ suc 𝑥 ) ) , 𝐴 ) ↾ ω )
Assertion unblem3 ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 unblem.2 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝐴 ∖ suc 𝑥 ) ) , 𝐴 ) ↾ ω )
2 1 unblem2 ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹𝑧 ) ∈ 𝐴 ) )
3 2 imp ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹𝑧 ) ∈ 𝐴 )
4 omsson ω ⊆ On
5 sstr ( ( 𝐴 ⊆ ω ∧ ω ⊆ On ) → 𝐴 ⊆ On )
6 4 5 mpan2 ( 𝐴 ⊆ ω → 𝐴 ⊆ On )
7 ssel ( 𝐴 ⊆ On → ( ( 𝐹𝑧 ) ∈ 𝐴 → ( 𝐹𝑧 ) ∈ On ) )
8 7 anc2li ( 𝐴 ⊆ On → ( ( 𝐹𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹𝑧 ) ∈ On ) ) )
9 6 8 syl ( 𝐴 ⊆ ω → ( ( 𝐹𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹𝑧 ) ∈ On ) ) )
10 9 ad2antrr ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( ( 𝐹𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹𝑧 ) ∈ On ) ) )
11 3 10 mpd ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐴 ⊆ On ∧ ( 𝐹𝑧 ) ∈ On ) )
12 onmindif ( ( 𝐴 ⊆ On ∧ ( 𝐹𝑧 ) ∈ On ) → ( 𝐹𝑧 ) ∈ ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
13 11 12 syl ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹𝑧 ) ∈ ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
14 unblem1 ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ ( 𝐹𝑧 ) ∈ 𝐴 ) → ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ∈ 𝐴 )
15 14 ex ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( ( 𝐹𝑧 ) ∈ 𝐴 ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ∈ 𝐴 ) )
16 2 15 syld ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( 𝑧 ∈ ω → ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ∈ 𝐴 ) )
17 suceq ( 𝑦 = 𝑥 → suc 𝑦 = suc 𝑥 )
18 17 difeq2d ( 𝑦 = 𝑥 → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc 𝑥 ) )
19 18 inteqd ( 𝑦 = 𝑥 ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc 𝑥 ) )
20 suceq ( 𝑦 = ( 𝐹𝑧 ) → suc 𝑦 = suc ( 𝐹𝑧 ) )
21 20 difeq2d ( 𝑦 = ( 𝐹𝑧 ) → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
22 21 inteqd ( 𝑦 = ( 𝐹𝑧 ) → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
23 1 19 22 frsucmpt2 ( ( 𝑧 ∈ ω ∧ ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ suc 𝑧 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
24 23 ex ( 𝑧 ∈ ω → ( ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑧 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ) )
25 16 24 sylcom ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ suc 𝑧 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) ) )
26 25 imp ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ suc 𝑧 ) = ( 𝐴 ∖ suc ( 𝐹𝑧 ) ) )
27 13 26 eleqtrrd ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) )
28 27 ex ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣𝐴 𝑤𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) )