Step |
Hyp |
Ref |
Expression |
1 |
|
unblem.2 |
⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ ∩ ( 𝐴 ∖ suc 𝑥 ) ) , ∩ 𝐴 ) ↾ ω ) |
2 |
1
|
unblem2 |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) ) |
3 |
2
|
imp |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) |
4 |
|
omsson |
⊢ ω ⊆ On |
5 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ω ∧ ω ⊆ On ) → 𝐴 ⊆ On ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ⊆ ω → 𝐴 ⊆ On ) |
7 |
|
ssel |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
8 |
7
|
anc2li |
⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝐴 ⊆ ω → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
10 |
9
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) ) |
11 |
3 10
|
mpd |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
12 |
|
onmindif |
⊢ ( ( 𝐴 ⊆ On ∧ ( 𝐹 ‘ 𝑧 ) ∈ On ) → ( 𝐹 ‘ 𝑧 ) ∈ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
14 |
|
unblem1 |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) |
15 |
14
|
ex |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
16 |
2 15
|
syld |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) ) |
17 |
|
suceq |
⊢ ( 𝑦 = 𝑥 → suc 𝑦 = suc 𝑥 ) |
18 |
17
|
difeq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc 𝑥 ) ) |
19 |
18
|
inteqd |
⊢ ( 𝑦 = 𝑥 → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc 𝑥 ) ) |
20 |
|
suceq |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → suc 𝑦 = suc ( 𝐹 ‘ 𝑧 ) ) |
21 |
20
|
difeq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ( 𝐴 ∖ suc 𝑦 ) = ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
22 |
21
|
inteqd |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑧 ) → ∩ ( 𝐴 ∖ suc 𝑦 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
23 |
1 19 22
|
frsucmpt2 |
⊢ ( ( 𝑧 ∈ ω ∧ ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
24 |
23
|
ex |
⊢ ( 𝑧 ∈ ω → ( ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐴 → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) ) |
25 |
16 24
|
sylcom |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ suc 𝑧 ) = ∩ ( 𝐴 ∖ suc ( 𝐹 ‘ 𝑧 ) ) ) |
27 |
13 26
|
eleqtrrd |
⊢ ( ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ⊆ ω ∧ ∀ 𝑤 ∈ ω ∃ 𝑣 ∈ 𝐴 𝑤 ∈ 𝑣 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ suc 𝑧 ) ) ) |