Step |
Hyp |
Ref |
Expression |
1 |
|
rankon |
⊢ ( rank ‘ 𝑦 ) ∈ On |
2 |
|
ontri1 |
⊢ ( ( ( rank ‘ 𝑦 ) ∈ On ∧ 𝑥 ∈ On ) → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝑥 ∈ On → ( ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
5 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ∈ ( rank ‘ 𝑦 ) ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
6 |
4 5
|
bitrdi |
⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) ) |
7 |
6
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ∃ 𝑥 ∈ On ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
8 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ On ¬ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
9 |
7 8
|
bitri |
⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 ↔ ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |
10 |
|
bndrank |
⊢ ( ∃ 𝑥 ∈ On ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑦 ) ⊆ 𝑥 → 𝐴 ∈ V ) |
11 |
9 10
|
sylbir |
⊢ ( ¬ ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) → 𝐴 ∈ V ) |
12 |
11
|
con1i |
⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ∈ On ∃ 𝑦 ∈ 𝐴 𝑥 ∈ ( rank ‘ 𝑦 ) ) |