| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2 | ⊢ ( 𝑧  ∈  ω  →  suc  𝑧  ∈  ω ) | 
						
							| 2 |  | sseq1 | ⊢ ( 𝑥  =  suc  𝑧  →  ( 𝑥  ⊆  𝑦  ↔  suc  𝑧  ⊆  𝑦 ) ) | 
						
							| 3 | 2 | rexbidv | ⊢ ( 𝑥  =  suc  𝑧  →  ( ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦  ↔  ∃ 𝑦  ∈  𝐴 suc  𝑧  ⊆  𝑦 ) ) | 
						
							| 4 | 3 | rspcv | ⊢ ( suc  𝑧  ∈  ω  →  ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦  →  ∃ 𝑦  ∈  𝐴 suc  𝑧  ⊆  𝑦 ) ) | 
						
							| 5 |  | sucssel | ⊢ ( 𝑧  ∈  V  →  ( suc  𝑧  ⊆  𝑦  →  𝑧  ∈  𝑦 ) ) | 
						
							| 6 | 5 | elv | ⊢ ( suc  𝑧  ⊆  𝑦  →  𝑧  ∈  𝑦 ) | 
						
							| 7 | 6 | reximi | ⊢ ( ∃ 𝑦  ∈  𝐴 suc  𝑧  ⊆  𝑦  →  ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 ) | 
						
							| 8 | 4 7 | syl6com | ⊢ ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦  →  ( suc  𝑧  ∈  ω  →  ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 ) ) | 
						
							| 9 | 1 8 | syl5 | ⊢ ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦  →  ( 𝑧  ∈  ω  →  ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 ) ) | 
						
							| 10 | 9 | ralrimiv | ⊢ ( ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦  →  ∀ 𝑧  ∈  ω ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 ) | 
						
							| 11 |  | unbnn | ⊢ ( ( ω  ∈  V  ∧  𝐴  ⊆  ω  ∧  ∀ 𝑧  ∈  ω ∃ 𝑦  ∈  𝐴 𝑧  ∈  𝑦 )  →  𝐴  ≈  ω ) | 
						
							| 12 | 10 11 | syl3an3 | ⊢ ( ( ω  ∈  V  ∧  𝐴  ⊆  ω  ∧  ∀ 𝑥  ∈  ω ∃ 𝑦  ∈  𝐴 𝑥  ⊆  𝑦 )  →  𝐴  ≈  ω ) |