Metamath Proof Explorer


Theorem unbnn2

Description: Version of unbnn that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion unbnn2 ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 ) → 𝐴 ≈ ω )

Proof

Step Hyp Ref Expression
1 peano2 ( 𝑧 ∈ ω → suc 𝑧 ∈ ω )
2 sseq1 ( 𝑥 = suc 𝑧 → ( 𝑥𝑦 ↔ suc 𝑧𝑦 ) )
3 2 rexbidv ( 𝑥 = suc 𝑧 → ( ∃ 𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑦𝐴 suc 𝑧𝑦 ) )
4 3 rspcv ( suc 𝑧 ∈ ω → ( ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 → ∃ 𝑦𝐴 suc 𝑧𝑦 ) )
5 sucssel ( 𝑧 ∈ V → ( suc 𝑧𝑦𝑧𝑦 ) )
6 5 elv ( suc 𝑧𝑦𝑧𝑦 )
7 6 reximi ( ∃ 𝑦𝐴 suc 𝑧𝑦 → ∃ 𝑦𝐴 𝑧𝑦 )
8 4 7 syl6com ( ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 → ( suc 𝑧 ∈ ω → ∃ 𝑦𝐴 𝑧𝑦 ) )
9 1 8 syl5 ( ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 → ( 𝑧 ∈ ω → ∃ 𝑦𝐴 𝑧𝑦 ) )
10 9 ralrimiv ( ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 → ∀ 𝑧 ∈ ω ∃ 𝑦𝐴 𝑧𝑦 )
11 unbnn ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑧 ∈ ω ∃ 𝑦𝐴 𝑧𝑦 ) → 𝐴 ≈ ω )
12 10 11 syl3an3 ( ( ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀ 𝑥 ∈ ω ∃ 𝑦𝐴 𝑥𝑦 ) → 𝐴 ≈ ω )