| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncmp.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → 𝐽 ∈ Top ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝐽 ∈ Top ) |
| 4 |
|
ssun1 |
⊢ 𝑆 ⊆ ( 𝑆 ∪ 𝑇 ) |
| 5 |
|
sseq2 |
⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ( 𝑆 ∪ 𝑇 ) ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
| 7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑆 ⊆ 𝑋 ) |
| 8 |
1
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 9 |
3 7 8
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 10 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑋 = ∪ 𝑐 ) |
| 11 |
7 10
|
sseqtrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑆 ⊆ ∪ 𝑐 ) |
| 12 |
|
unieq |
⊢ ( 𝑚 = 𝑐 → ∪ 𝑚 = ∪ 𝑐 ) |
| 13 |
12
|
sseq2d |
⊢ ( 𝑚 = 𝑐 → ( 𝑆 ⊆ ∪ 𝑚 ↔ 𝑆 ⊆ ∪ 𝑐 ) ) |
| 14 |
|
pweq |
⊢ ( 𝑚 = 𝑐 → 𝒫 𝑚 = 𝒫 𝑐 ) |
| 15 |
14
|
ineq1d |
⊢ ( 𝑚 = 𝑐 → ( 𝒫 𝑚 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
| 16 |
15
|
rexeqdv |
⊢ ( 𝑚 = 𝑐 → ( ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ↔ ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 17 |
13 16
|
imbi12d |
⊢ ( 𝑚 = 𝑐 → ( ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ↔ ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 18 |
17
|
rspcv |
⊢ ( 𝑐 ∈ 𝒫 𝐽 → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 19 |
18
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ( 𝑆 ⊆ ∪ 𝑐 → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) ) |
| 20 |
11 19
|
mpid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑚 ∈ 𝒫 𝐽 ( 𝑆 ⊆ ∪ 𝑚 → ∃ 𝑛 ∈ ( 𝒫 𝑚 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 21 |
9 20
|
sylbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Comp → ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ) ) |
| 22 |
|
ssun2 |
⊢ 𝑇 ⊆ ( 𝑆 ∪ 𝑇 ) |
| 23 |
|
sseq2 |
⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → ( 𝑇 ⊆ 𝑋 ↔ 𝑇 ⊆ ( 𝑆 ∪ 𝑇 ) ) ) |
| 24 |
22 23
|
mpbiri |
⊢ ( 𝑋 = ( 𝑆 ∪ 𝑇 ) → 𝑇 ⊆ 𝑋 ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑇 ⊆ 𝑋 ) |
| 26 |
1
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp ↔ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 27 |
3 25 26
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp ↔ ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 28 |
25 10
|
sseqtrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → 𝑇 ⊆ ∪ 𝑐 ) |
| 29 |
|
unieq |
⊢ ( 𝑟 = 𝑐 → ∪ 𝑟 = ∪ 𝑐 ) |
| 30 |
29
|
sseq2d |
⊢ ( 𝑟 = 𝑐 → ( 𝑇 ⊆ ∪ 𝑟 ↔ 𝑇 ⊆ ∪ 𝑐 ) ) |
| 31 |
|
pweq |
⊢ ( 𝑟 = 𝑐 → 𝒫 𝑟 = 𝒫 𝑐 ) |
| 32 |
31
|
ineq1d |
⊢ ( 𝑟 = 𝑐 → ( 𝒫 𝑟 ∩ Fin ) = ( 𝒫 𝑐 ∩ Fin ) ) |
| 33 |
32
|
rexeqdv |
⊢ ( 𝑟 = 𝑐 → ( ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ↔ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 34 |
30 33
|
imbi12d |
⊢ ( 𝑟 = 𝑐 → ( ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ↔ ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 35 |
34
|
rspcv |
⊢ ( 𝑐 ∈ 𝒫 𝐽 → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 36 |
35
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑇 ⊆ ∪ 𝑐 → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) ) |
| 37 |
28 36
|
mpid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∀ 𝑟 ∈ 𝒫 𝐽 ( 𝑇 ⊆ ∪ 𝑟 → ∃ 𝑠 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 38 |
27 37
|
sylbid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝐽 ↾t 𝑇 ) ∈ Comp → ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 39 |
|
reeanv |
⊢ ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ↔ ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) ) |
| 40 |
|
elinel1 |
⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ∈ 𝒫 𝑐 ) |
| 41 |
40
|
elpwid |
⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ⊆ 𝑐 ) |
| 42 |
|
elinel1 |
⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ∈ 𝒫 𝑐 ) |
| 43 |
42
|
elpwid |
⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ⊆ 𝑐 ) |
| 44 |
41 43
|
anim12i |
⊢ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ) |
| 45 |
44
|
ad2antrl |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ) |
| 46 |
|
unss |
⊢ ( ( 𝑛 ⊆ 𝑐 ∧ 𝑠 ⊆ 𝑐 ) ↔ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) |
| 47 |
45 46
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) |
| 48 |
|
elinel2 |
⊢ ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑛 ∈ Fin ) |
| 49 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) → 𝑠 ∈ Fin ) |
| 50 |
|
unfi |
⊢ ( ( 𝑛 ∈ Fin ∧ 𝑠 ∈ Fin ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) |
| 51 |
48 49 50
|
syl2an |
⊢ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) |
| 52 |
51
|
ad2antrl |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ∈ Fin ) |
| 53 |
47 52
|
jca |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) |
| 54 |
|
elin |
⊢ ( ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ↔ ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) |
| 55 |
|
vex |
⊢ 𝑐 ∈ V |
| 56 |
55
|
elpw2 |
⊢ ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ↔ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ) |
| 57 |
56
|
anbi1i |
⊢ ( ( ( 𝑛 ∪ 𝑠 ) ∈ 𝒫 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ↔ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ) |
| 58 |
54 57
|
bitr2i |
⊢ ( ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝑐 ∧ ( 𝑛 ∪ 𝑠 ) ∈ Fin ) ↔ ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 59 |
53 58
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ) |
| 60 |
|
simpllr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 = ( 𝑆 ∪ 𝑇 ) ) |
| 61 |
|
ssun3 |
⊢ ( 𝑆 ⊆ ∪ 𝑛 → 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 62 |
|
ssun4 |
⊢ ( 𝑇 ⊆ ∪ 𝑠 → 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 63 |
61 62
|
anim12i |
⊢ ( ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ) |
| 64 |
63
|
ad2antll |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ) |
| 65 |
|
unss |
⊢ ( ( 𝑆 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ∧ 𝑇 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) ↔ ( 𝑆 ∪ 𝑇 ) ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 66 |
64 65
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑆 ∪ 𝑇 ) ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 67 |
60 66
|
eqsstrd |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 ⊆ ( ∪ 𝑛 ∪ ∪ 𝑠 ) ) |
| 68 |
|
uniun |
⊢ ∪ ( 𝑛 ∪ 𝑠 ) = ( ∪ 𝑛 ∪ ∪ 𝑠 ) |
| 69 |
67 68
|
sseqtrrdi |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 ⊆ ∪ ( 𝑛 ∪ 𝑠 ) ) |
| 70 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 𝐽 → 𝑐 ⊆ 𝐽 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → 𝑐 ⊆ 𝐽 ) |
| 72 |
71
|
ad2antlr |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑐 ⊆ 𝐽 ) |
| 73 |
47 72
|
sstrd |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 ) |
| 74 |
|
uniss |
⊢ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ ∪ 𝐽 ) |
| 75 |
74 1
|
sseqtrrdi |
⊢ ( ( 𝑛 ∪ 𝑠 ) ⊆ 𝐽 → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑋 ) |
| 76 |
73 75
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ∪ ( 𝑛 ∪ 𝑠 ) ⊆ 𝑋 ) |
| 77 |
69 76
|
eqssd |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → 𝑋 = ∪ ( 𝑛 ∪ 𝑠 ) ) |
| 78 |
|
unieq |
⊢ ( 𝑑 = ( 𝑛 ∪ 𝑠 ) → ∪ 𝑑 = ∪ ( 𝑛 ∪ 𝑠 ) ) |
| 79 |
78
|
rspceeqv |
⊢ ( ( ( 𝑛 ∪ 𝑠 ) ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑋 = ∪ ( 𝑛 ∪ 𝑠 ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 80 |
59 77 79
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) ∧ ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) ∧ ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) ) ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) |
| 81 |
80
|
exp32 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∧ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ) → ( ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 82 |
81
|
rexlimdvv |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) ( 𝑆 ⊆ ∪ 𝑛 ∧ 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 83 |
39 82
|
biimtrrid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( ∃ 𝑛 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑆 ⊆ ∪ 𝑛 ∧ ∃ 𝑠 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑇 ⊆ ∪ 𝑠 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 84 |
21 38 83
|
syl2and |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) ) → ( ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 85 |
84
|
impancom |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ( ( 𝑐 ∈ 𝒫 𝐽 ∧ 𝑋 = ∪ 𝑐 ) → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 86 |
85
|
expd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ( 𝑐 ∈ 𝒫 𝐽 → ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 87 |
86
|
ralrimiv |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) |
| 88 |
1
|
iscmp |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑐 → ∃ 𝑑 ∈ ( 𝒫 𝑐 ∩ Fin ) 𝑋 = ∪ 𝑑 ) ) ) |
| 89 |
2 87 88
|
sylanbrc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 = ( 𝑆 ∪ 𝑇 ) ) ∧ ( ( 𝐽 ↾t 𝑆 ) ∈ Comp ∧ ( 𝐽 ↾t 𝑇 ) ∈ Comp ) ) → 𝐽 ∈ Comp ) |