| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ctex | ⊢ ( 𝐴  ≼  ω  →  𝐴  ∈  V ) | 
						
							| 2 |  | ctex | ⊢ ( 𝐵  ≼  ω  →  𝐵  ∈  V ) | 
						
							| 3 |  | undjudom | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 5 |  | djudom1 | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ∈  V )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  𝐵 ) ) | 
						
							| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  𝐵 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  𝐵  ≼  ω ) | 
						
							| 8 |  | omex | ⊢ ω  ∈  V | 
						
							| 9 |  | djudom2 | ⊢ ( ( 𝐵  ≼  ω  ∧  ω  ∈  V )  →  ( ω  ⊔  𝐵 )  ≼  ( ω  ⊔  ω ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( ω  ⊔  𝐵 )  ≼  ( ω  ⊔  ω ) ) | 
						
							| 11 |  | domtr | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  𝐵 )  ∧  ( ω  ⊔  𝐵 )  ≼  ( ω  ⊔  ω ) )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  ω ) ) | 
						
							| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  ω ) ) | 
						
							| 13 | 8 8 | xpex | ⊢ ( ω  ×  ω )  ∈  V | 
						
							| 14 |  | xp2dju | ⊢ ( 2o  ×  ω )  =  ( ω  ⊔  ω ) | 
						
							| 15 |  | ordom | ⊢ Ord  ω | 
						
							| 16 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 17 |  | ordelss | ⊢ ( ( Ord  ω  ∧  2o  ∈  ω )  →  2o  ⊆  ω ) | 
						
							| 18 | 15 16 17 | mp2an | ⊢ 2o  ⊆  ω | 
						
							| 19 |  | xpss1 | ⊢ ( 2o  ⊆  ω  →  ( 2o  ×  ω )  ⊆  ( ω  ×  ω ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( 2o  ×  ω )  ⊆  ( ω  ×  ω ) | 
						
							| 21 | 14 20 | eqsstrri | ⊢ ( ω  ⊔  ω )  ⊆  ( ω  ×  ω ) | 
						
							| 22 |  | ssdomg | ⊢ ( ( ω  ×  ω )  ∈  V  →  ( ( ω  ⊔  ω )  ⊆  ( ω  ×  ω )  →  ( ω  ⊔  ω )  ≼  ( ω  ×  ω ) ) ) | 
						
							| 23 | 13 21 22 | mp2 | ⊢ ( ω  ⊔  ω )  ≼  ( ω  ×  ω ) | 
						
							| 24 |  | xpomen | ⊢ ( ω  ×  ω )  ≈  ω | 
						
							| 25 |  | domentr | ⊢ ( ( ( ω  ⊔  ω )  ≼  ( ω  ×  ω )  ∧  ( ω  ×  ω )  ≈  ω )  →  ( ω  ⊔  ω )  ≼  ω ) | 
						
							| 26 | 23 24 25 | mp2an | ⊢ ( ω  ⊔  ω )  ≼  ω | 
						
							| 27 |  | domtr | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≼  ( ω  ⊔  ω )  ∧  ( ω  ⊔  ω )  ≼  ω )  →  ( 𝐴  ⊔  𝐵 )  ≼  ω ) | 
						
							| 28 | 12 26 27 | sylancl | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( 𝐴  ⊔  𝐵 )  ≼  ω ) | 
						
							| 29 |  | domtr | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 )  ∧  ( 𝐴  ⊔  𝐵 )  ≼  ω )  →  ( 𝐴  ∪  𝐵 )  ≼  ω ) | 
						
							| 30 | 4 28 29 | syl2anc | ⊢ ( ( 𝐴  ≼  ω  ∧  𝐵  ≼  ω )  →  ( 𝐴  ∪  𝐵 )  ≼  ω ) |