Metamath Proof Explorer


Theorem undefne0

Description: The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018)

Ref Expression
Assertion undefne0 ( 𝑆𝑉 → ( Undef ‘ 𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 undefval ( 𝑆𝑉 → ( Undef ‘ 𝑆 ) = 𝒫 𝑆 )
2 pwne0 𝒫 𝑆 ≠ ∅
3 2 a1i ( 𝑆𝑉 → 𝒫 𝑆 ≠ ∅ )
4 1 3 eqnetrd ( 𝑆𝑉 → ( Undef ‘ 𝑆 ) ≠ ∅ )