Metamath Proof Explorer


Theorem undi

Description: Distributive law for union over intersection. Exercise 11 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion undi ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
2 1 orbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴 ∨ ( 𝑥𝐵𝑥𝐶 ) ) )
3 ordi ( ( 𝑥𝐴 ∨ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) )
4 elin ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐶 ) ) )
5 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
6 elun ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
7 5 6 anbi12i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥 ∈ ( 𝐴𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) )
8 4 7 bitr2i ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ ( 𝑥𝐴𝑥𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) ) )
9 2 3 8 3bitri ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) ) )
10 9 uneqri ( 𝐴 ∪ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∩ ( 𝐴𝐶 ) )