Description: Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) | |
| 2 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 3 | 2 | eqeq1i | ⊢ ( ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 4 | 1 3 | bitr4i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |