| Step |
Hyp |
Ref |
Expression |
| 1 |
|
undir |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) |
| 2 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
| 3 |
2
|
uneq1i |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 4 |
|
uncom |
⊢ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( V ∖ 𝐵 ) ) |
| 5 |
|
unvdif |
⊢ ( 𝐵 ∪ ( V ∖ 𝐵 ) ) = V |
| 6 |
4 5
|
eqtri |
⊢ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = V |
| 7 |
6
|
ineq2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ V ) |
| 8 |
|
inv1 |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ V ) = ( 𝐴 ∪ 𝐵 ) |
| 9 |
7 8
|
eqtri |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( 𝐴 ∪ 𝐵 ) |
| 10 |
1 3 9
|
3eqtr3i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |