Step |
Hyp |
Ref |
Expression |
1 |
|
unexg |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
3 |
|
ixpfn |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) |
4 |
|
ixpfn |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → 𝐹 Fn 𝐵 ) |
5 |
|
3simpa |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ) ) |
6 |
5
|
ancomd |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ) |
7 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
8 |
|
fnun |
⊢ ( ( ( 𝐹 Fn 𝐵 ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ) ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
9 |
6 7 8
|
sylancl |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
10 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
11 |
10
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
12 |
11
|
eqcomd |
⊢ ( 𝐵 ⊆ 𝐴 → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
14 |
13
|
fneq2d |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ↔ ( 𝐹 ∪ 𝐺 ) Fn ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) ) |
15 |
9 14
|
mpbird |
⊢ ( ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
16 |
15
|
3exp |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
17 |
3 4 16
|
syl2imc |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) ) ) |
18 |
17
|
3imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ) |
19 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) ) |
20 |
19
|
simp3bi |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
21 |
|
fndm |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) |
22 |
|
elndif |
⊢ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
23 |
|
eleq2 |
⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ 𝑥 ∈ dom 𝐺 ) ) |
24 |
23
|
notbid |
⊢ ( ( 𝐴 ∖ 𝐵 ) = dom 𝐺 → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
25 |
24
|
eqcoms |
⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ¬ 𝑥 ∈ dom 𝐺 ) ) |
26 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
27 |
25 26
|
syl6bi |
⊢ ( dom 𝐺 = ( 𝐴 ∖ 𝐵 ) → ( ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
28 |
21 22 27
|
syl2im |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝐺 ‘ 𝑥 ) = ∅ ) ) |
29 |
28
|
ralrimiv |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ ) |
30 |
|
uneq2 |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ) |
31 |
|
un0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) |
32 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
33 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
34 |
33
|
biimpd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
35 |
34
|
eqcoms |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
36 |
32 35
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐹 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
37 |
30 31 36
|
sylancl |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
38 |
37
|
com12 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐺 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
39 |
38
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐺 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
40 |
20 29 39
|
syl2imc |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
41 |
3 40
|
syl |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
42 |
41
|
impcom |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
43 |
|
elixp2 |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) ) |
44 |
43
|
simp3bi |
⊢ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
45 |
|
fndm |
⊢ ( 𝐹 Fn 𝐵 → dom 𝐹 = 𝐵 ) |
46 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) |
47 |
|
eleq2 |
⊢ ( 𝐵 = dom 𝐹 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ dom 𝐹 ) ) |
48 |
47
|
notbid |
⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹 ) ) |
49 |
|
ndmfv |
⊢ ( ¬ 𝑥 ∈ dom 𝐹 → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
50 |
48 49
|
syl6bi |
⊢ ( 𝐵 = dom 𝐹 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
51 |
50
|
eqcoms |
⊢ ( dom 𝐹 = 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
52 |
45 46 51
|
syl2im |
⊢ ( 𝐹 Fn 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
53 |
52
|
ralrimiv |
⊢ ( 𝐹 Fn 𝐵 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ ) |
54 |
|
uneq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
55 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) |
56 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) |
57 |
|
un0 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) |
58 |
|
eqtr |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
59 |
|
eleq1 |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
60 |
59
|
biimpd |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
61 |
60
|
eqcoms |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
62 |
58 61
|
syl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
63 |
56 57 62
|
sylancl |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) ∧ ( ∅ ∪ ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑥 ) ∪ ∅ ) ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
64 |
54 55 63
|
sylancl |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
65 |
64
|
com12 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
66 |
65
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = ∅ → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
67 |
44 53 66
|
syl2imc |
⊢ ( 𝐹 Fn 𝐵 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
68 |
4 67
|
syl |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
69 |
68
|
imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
70 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
71 |
42 69 70
|
sylanbrc |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ) → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
72 |
71
|
ex |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
73 |
|
raleq |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
74 |
73
|
imbi2d |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ↔ ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
75 |
72 74
|
syl5ibr |
⊢ ( 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
76 |
75
|
eqcoms |
⊢ ( ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
77 |
10 76
|
sylbi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) |
78 |
77
|
3imp231 |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) |
79 |
|
df-fn |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) ↔ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) |
80 |
|
df-fn |
⊢ ( 𝐹 Fn 𝐵 ↔ ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ) |
81 |
|
simpl |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → Fun 𝐹 ) |
82 |
|
simpl |
⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → Fun 𝐺 ) |
83 |
81 82
|
anim12i |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
84 |
83
|
3adant3 |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
85 |
|
ineq12 |
⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) ) |
86 |
85 7
|
eqtrdi |
⊢ ( ( dom 𝐹 = 𝐵 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
87 |
86
|
ad2ant2l |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
88 |
87
|
3adant3 |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) |
89 |
|
fvun |
⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
90 |
84 88 89
|
syl2anc |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ) |
91 |
90
|
eleq1d |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
92 |
91
|
ralbidv |
⊢ ( ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) ∧ ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
93 |
92
|
3exp |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = 𝐵 ) → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
94 |
80 93
|
sylbi |
⊢ ( 𝐹 Fn 𝐵 → ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
95 |
94
|
com12 |
⊢ ( ( Fun 𝐺 ∧ dom 𝐺 = ( 𝐴 ∖ 𝐵 ) ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
96 |
79 95
|
sylbi |
⊢ ( 𝐺 Fn ( 𝐴 ∖ 𝐵 ) → ( 𝐹 Fn 𝐵 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
97 |
3 4 96
|
syl2imc |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 → ( 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 → ( 𝐵 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) ) ) |
98 |
97
|
3imp |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) ∪ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐶 ) ) |
99 |
78 98
|
mpbird |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) |
100 |
|
elixp2 |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ↔ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ ( 𝐹 ∪ 𝐺 ) Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ∪ 𝐺 ) ‘ 𝑥 ) ∈ 𝐶 ) ) |
101 |
2 18 99 100
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ X 𝑥 ∈ 𝐵 𝐶 ∧ 𝐺 ∈ X 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐹 ∪ 𝐺 ) ∈ X 𝑥 ∈ 𝐴 𝐶 ) |