| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unexg | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶 )  →  ( 𝐹  ∪  𝐺 )  ∈  V ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ∪  𝐺 )  ∈  V ) | 
						
							| 3 |  | ixpfn | ⊢ ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  𝐺  Fn  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 4 |  | ixpfn | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  𝐹  Fn  𝐵 ) | 
						
							| 5 |  | 3simpa | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵 ) ) | 
						
							| 6 | 5 | ancomd | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  Fn  𝐵  ∧  𝐺  Fn  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 7 |  | disjdif | ⊢ ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ | 
						
							| 8 |  | fnun | ⊢ ( ( ( 𝐹  Fn  𝐵  ∧  𝐺  Fn  ( 𝐴  ∖  𝐵 ) )  ∧  ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ )  →  ( 𝐹  ∪  𝐺 )  Fn  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ∪  𝐺 )  Fn  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 10 |  | undif | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 11 | 10 | biimpi | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝐵  ⊆  𝐴  →  𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 14 | 13 | fneq2d | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝐹  ∪  𝐺 )  Fn  𝐴  ↔  ( 𝐹  ∪  𝐺 )  Fn  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 15 | 9 14 | mpbird | ⊢ ( ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  𝐹  Fn  𝐵  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ∪  𝐺 )  Fn  𝐴 ) | 
						
							| 16 | 15 | 3exp | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  ( 𝐹  Fn  𝐵  →  ( 𝐵  ⊆  𝐴  →  ( 𝐹  ∪  𝐺 )  Fn  𝐴 ) ) ) | 
						
							| 17 | 3 4 16 | syl2imc | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ( 𝐵  ⊆  𝐴  →  ( 𝐹  ∪  𝐺 )  Fn  𝐴 ) ) ) | 
						
							| 18 | 17 | 3imp | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ∪  𝐺 )  Fn  𝐴 ) | 
						
							| 19 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 20 | 19 | simp3bi | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 21 |  | fndm | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 22 |  | elndif | ⊢ ( 𝑥  ∈  𝐵  →  ¬  𝑥  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 23 |  | eleq2 | ⊢ ( ( 𝐴  ∖  𝐵 )  =  dom  𝐺  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  𝑥  ∈  dom  𝐺 ) ) | 
						
							| 24 | 23 | notbid | ⊢ ( ( 𝐴  ∖  𝐵 )  =  dom  𝐺  →  ( ¬  𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  ¬  𝑥  ∈  dom  𝐺 ) ) | 
						
							| 25 | 24 | eqcoms | ⊢ ( dom  𝐺  =  ( 𝐴  ∖  𝐵 )  →  ( ¬  𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  ¬  𝑥  ∈  dom  𝐺 ) ) | 
						
							| 26 |  | ndmfv | ⊢ ( ¬  𝑥  ∈  dom  𝐺  →  ( 𝐺 ‘ 𝑥 )  =  ∅ ) | 
						
							| 27 | 25 26 | biimtrdi | ⊢ ( dom  𝐺  =  ( 𝐴  ∖  𝐵 )  →  ( ¬  𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 𝐺 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 28 | 21 22 27 | syl2im | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  ( 𝑥  ∈  𝐵  →  ( 𝐺 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 29 | 28 | ralrimiv | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ( 𝐺 ‘ 𝑥 )  =  ∅ ) | 
						
							| 30 |  | uneq2 | ⊢ ( ( 𝐺 ‘ 𝑥 )  =  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ ) ) | 
						
							| 31 |  | un0 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐹 ‘ 𝑥 ) | 
						
							| 32 |  | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 33 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  ↔  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 34 | 33 | biimpd | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 35 | 34 | eqcoms | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 36 | 32 35 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ )  ∧  ( ( 𝐹 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐹 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 37 | 30 31 36 | sylancl | ⊢ ( ( 𝐺 ‘ 𝑥 )  =  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐺 ‘ 𝑥 )  =  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 39 | 38 | ral2imi | ⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝐹 ‘ 𝑥 )  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐵 ( 𝐺 ‘ 𝑥 )  =  ∅  →  ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 40 | 20 29 39 | syl2imc | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 42 | 41 | impcom | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶 )  →  ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) | 
						
							| 43 |  | elixp2 | ⊢ ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ↔  ( 𝐺  ∈  V  ∧  𝐺  Fn  ( 𝐴  ∖  𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 𝐺 ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 44 | 43 | simp3bi | ⊢ ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 𝐺 ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 45 |  | fndm | ⊢ ( 𝐹  Fn  𝐵  →  dom  𝐹  =  𝐵 ) | 
						
							| 46 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ¬  𝑥  ∈  𝐵 ) | 
						
							| 47 |  | eleq2 | ⊢ ( 𝐵  =  dom  𝐹  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 48 | 47 | notbid | ⊢ ( 𝐵  =  dom  𝐹  →  ( ¬  𝑥  ∈  𝐵  ↔  ¬  𝑥  ∈  dom  𝐹 ) ) | 
						
							| 49 |  | ndmfv | ⊢ ( ¬  𝑥  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 50 | 48 49 | biimtrdi | ⊢ ( 𝐵  =  dom  𝐹  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 51 | 50 | eqcoms | ⊢ ( dom  𝐹  =  𝐵  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 52 | 45 46 51 | syl2im | ⊢ ( 𝐹  Fn  𝐵  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  →  ( 𝐹 ‘ 𝑥 )  =  ∅ ) ) | 
						
							| 53 | 52 | ralrimiv | ⊢ ( 𝐹  Fn  𝐵  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 𝐹 ‘ 𝑥 )  =  ∅ ) | 
						
							| 54 |  | uneq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 55 |  | uncom | ⊢ ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ ) | 
						
							| 56 |  | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) )  ∧  ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ ) ) | 
						
							| 57 |  | un0 | ⊢ ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐺 ‘ 𝑥 ) | 
						
							| 58 |  | eqtr | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ )  ∧  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 59 |  | eleq1 | ⊢ ( ( 𝐺 ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  ↔  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 60 | 59 | biimpd | ⊢ ( ( 𝐺 ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 61 | 60 | eqcoms | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐺 ‘ 𝑥 )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 62 | 58 61 | syl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ )  ∧  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ )  =  ( 𝐺 ‘ 𝑥 ) )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 63 | 56 57 62 | sylancl | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) )  ∧  ( ∅  ∪  ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝑥 )  ∪  ∅ ) )  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 64 | 54 55 63 | sylancl | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 65 | 64 | com12 | ⊢ ( ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝑥 )  =  ∅  →  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 66 | 65 | ral2imi | ⊢ ( ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 𝐺 ‘ 𝑥 )  ∈  𝐶  →  ( ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( 𝐹 ‘ 𝑥 )  =  ∅  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 67 | 44 53 66 | syl2imc | ⊢ ( 𝐹  Fn  𝐵  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 68 | 4 67 | syl | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 69 | 68 | imp | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶 )  →  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) | 
						
							| 70 |  | ralunb | ⊢ ( ∀ 𝑥  ∈  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶  ↔  ( ∀ 𝑥  ∈  𝐵 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶  ∧  ∀ 𝑥  ∈  ( 𝐴  ∖  𝐵 ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 71 | 42 69 70 | sylanbrc | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶 )  →  ∀ 𝑥  ∈  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) | 
						
							| 72 | 71 | ex | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 73 |  | raleq | ⊢ ( 𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶  ↔  ∀ 𝑥  ∈  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 74 | 73 | imbi2d | ⊢ ( 𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  →  ( ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 )  ↔  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) | 
						
							| 75 | 72 74 | imbitrrid | ⊢ ( 𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  →  ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) | 
						
							| 76 | 75 | eqcoms | ⊢ ( ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴  →  ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) | 
						
							| 77 | 10 76 | sylbi | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) | 
						
							| 78 | 77 | 3imp231 | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) | 
						
							| 79 |  | df-fn | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  ↔  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 80 |  | df-fn | ⊢ ( 𝐹  Fn  𝐵  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 ) ) | 
						
							| 81 |  | simpl | ⊢ ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  →  Fun  𝐹 ) | 
						
							| 82 |  | simpl | ⊢ ( ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  Fun  𝐺 ) | 
						
							| 83 | 81 82 | anim12i | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) ) )  →  ( Fun  𝐹  ∧  Fun  𝐺 ) ) | 
						
							| 84 | 83 | 3adant3 | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  ∧  𝐵  ⊆  𝐴 )  →  ( Fun  𝐹  ∧  Fun  𝐺 ) ) | 
						
							| 85 |  | ineq12 | ⊢ ( ( dom  𝐹  =  𝐵  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 86 | 85 7 | eqtrdi | ⊢ ( ( dom  𝐹  =  𝐵  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ ) | 
						
							| 87 | 86 | ad2ant2l | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) ) )  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ ) | 
						
							| 88 | 87 | 3adant3 | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  ∧  𝐵  ⊆  𝐴 )  →  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ ) | 
						
							| 89 |  | fvun | ⊢ ( ( ( Fun  𝐹  ∧  Fun  𝐺 )  ∧  ( dom  𝐹  ∩  dom  𝐺 )  =  ∅ )  →  ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 90 | 84 88 89 | syl2anc | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  =  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 91 | 90 | eleq1d | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  ∧  𝐵  ⊆  𝐴 )  →  ( ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 92 | 91 | ralbidv | ⊢ ( ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  ∧  ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  ∧  𝐵  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 93 | 92 | 3exp | ⊢ ( ( Fun  𝐹  ∧  dom  𝐹  =  𝐵 )  →  ( ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) ) | 
						
							| 94 | 80 93 | sylbi | ⊢ ( 𝐹  Fn  𝐵  →  ( ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) ) | 
						
							| 95 | 94 | com12 | ⊢ ( ( Fun  𝐺  ∧  dom  𝐺  =  ( 𝐴  ∖  𝐵 ) )  →  ( 𝐹  Fn  𝐵  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) ) | 
						
							| 96 | 79 95 | sylbi | ⊢ ( 𝐺  Fn  ( 𝐴  ∖  𝐵 )  →  ( 𝐹  Fn  𝐵  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) ) | 
						
							| 97 | 3 4 96 | syl2imc | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  →  ( 𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  →  ( 𝐵  ⊆  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) ) ) | 
						
							| 98 | 97 | 3imp | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  ∪  ( 𝐺 ‘ 𝑥 ) )  ∈  𝐶 ) ) | 
						
							| 99 | 78 98 | mpbird | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶 ) | 
						
							| 100 |  | elixp2 | ⊢ ( ( 𝐹  ∪  𝐺 )  ∈  X 𝑥  ∈  𝐴 𝐶  ↔  ( ( 𝐹  ∪  𝐺 )  ∈  V  ∧  ( 𝐹  ∪  𝐺 )  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹  ∪  𝐺 ) ‘ 𝑥 )  ∈  𝐶 ) ) | 
						
							| 101 | 2 18 99 100 | syl3anbrc | ⊢ ( ( 𝐹  ∈  X 𝑥  ∈  𝐵 𝐶  ∧  𝐺  ∈  X 𝑥  ∈  ( 𝐴  ∖  𝐵 ) 𝐶  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐹  ∪  𝐺 )  ∈  X 𝑥  ∈  𝐴 𝐶 ) |