Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | undisj2 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ∩ 𝐶 ) = ∅ ) ↔ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un00 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ∩ 𝐶 ) = ∅ ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) = ∅ ) | |
2 | indi | ⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) | |
3 | 2 | eqeq1i | ⊢ ( ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ∅ ↔ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) = ∅ ) |
4 | 1 3 | bitr4i | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝐴 ∩ 𝐶 ) = ∅ ) ↔ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ∅ ) |