Metamath Proof Explorer


Theorem undjudom

Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004) (Revised by Jim Kingdon, 15-Aug-2023)

Ref Expression
Assertion undjudom ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 xpsnen2g ( ( ∅ ∈ V ∧ 𝐴𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
3 1 2 mpan ( 𝐴𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 )
4 ensym ( ( { ∅ } × 𝐴 ) ≈ 𝐴𝐴 ≈ ( { ∅ } × 𝐴 ) )
5 endom ( 𝐴 ≈ ( { ∅ } × 𝐴 ) → 𝐴 ≼ ( { ∅ } × 𝐴 ) )
6 3 4 5 3syl ( 𝐴𝑉𝐴 ≼ ( { ∅ } × 𝐴 ) )
7 1on 1o ∈ On
8 xpsnen2g ( ( 1o ∈ On ∧ 𝐵𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 )
9 7 8 mpan ( 𝐵𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 )
10 ensym ( ( { 1o } × 𝐵 ) ≈ 𝐵𝐵 ≈ ( { 1o } × 𝐵 ) )
11 endom ( 𝐵 ≈ ( { 1o } × 𝐵 ) → 𝐵 ≼ ( { 1o } × 𝐵 ) )
12 9 10 11 3syl ( 𝐵𝑊𝐵 ≼ ( { 1o } × 𝐵 ) )
13 xp01disjl ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅
14 undom ( ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ) → ( 𝐴𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
15 13 14 mpan2 ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) → ( 𝐴𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
16 6 12 15 syl2an ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) )
17 df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
18 16 17 breqtrrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )