Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
4 |
|
ensym |
⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( { ∅ } × 𝐴 ) ) |
5 |
|
endom |
⊢ ( 𝐴 ≈ ( { ∅ } × 𝐴 ) → 𝐴 ≼ ( { ∅ } × 𝐴 ) ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( { ∅ } × 𝐴 ) ) |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
|
xpsnen2g |
⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
9 |
7 8
|
mpan |
⊢ ( 𝐵 ∈ 𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
10 |
|
ensym |
⊢ ( ( { 1o } × 𝐵 ) ≈ 𝐵 → 𝐵 ≈ ( { 1o } × 𝐵 ) ) |
11 |
|
endom |
⊢ ( 𝐵 ≈ ( { 1o } × 𝐵 ) → 𝐵 ≼ ( { 1o } × 𝐵 ) ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ≼ ( { 1o } × 𝐵 ) ) |
13 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ |
14 |
|
undom |
⊢ ( ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
15 |
13 14
|
mpan2 |
⊢ ( ( 𝐴 ≼ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≼ ( { 1o } × 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
16 |
6 12 15
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
17 |
|
df-dju |
⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) |
18 |
16 17
|
breqtrrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |