Step |
Hyp |
Ref |
Expression |
1 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐶 ) |
2 |
|
reldom |
⊢ Rel ≼ |
3 |
2
|
brrelex2i |
⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
4 |
2
|
brrelex2i |
⊢ ( 𝐶 ≼ 𝐷 → 𝐷 ∈ V ) |
5 |
|
unexg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
8 |
|
brdomi |
⊢ ( 𝐴 ≼ 𝐵 → ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ) |
9 |
|
brdomi |
⊢ ( 𝐶 ≼ 𝐷 → ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) |
10 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ↔ ( ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) ) |
11 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ |
12 |
|
difss |
⊢ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 |
13 |
|
f1ssres |
⊢ ( ( 𝑦 : 𝐶 –1-1→ 𝐷 ∧ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 ) → ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) |
14 |
12 13
|
mpan2 |
⊢ ( 𝑦 : 𝐶 –1-1→ 𝐷 → ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) |
15 |
|
f1un |
⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) : ( 𝐶 ∖ 𝐴 ) –1-1→ 𝐷 ) ∧ ( ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) |
16 |
14 15
|
sylanl2 |
⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( ( 𝐴 ∩ ( 𝐶 ∖ 𝐴 ) ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) |
17 |
11 16
|
mpanr1 |
⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
resex |
⊢ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ∈ V |
21 |
18 20
|
unex |
⊢ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) ∈ V |
22 |
|
f1dom3g |
⊢ ( ( ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) ∈ V ∧ ( 𝐵 ∪ 𝐷 ) ∈ V ∧ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
23 |
21 22
|
mp3an1 |
⊢ ( ( ( 𝐵 ∪ 𝐷 ) ∈ V ∧ ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
24 |
23
|
expcom |
⊢ ( ( 𝑥 ∪ ( 𝑦 ↾ ( 𝐶 ∖ 𝐴 ) ) ) : ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) –1-1→ ( 𝐵 ∪ 𝐷 ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
25 |
17 24
|
syl |
⊢ ( ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
27 |
26
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
28 |
10 27
|
sylbir |
⊢ ( ( ∃ 𝑥 𝑥 : 𝐴 –1-1→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
29 |
8 9 28
|
syl2an |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) → ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( 𝐵 ∪ 𝐷 ) ∈ V → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) ) |
31 |
7 30
|
mpd |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ ( 𝐶 ∖ 𝐴 ) ) ≼ ( 𝐵 ∪ 𝐷 ) ) |
32 |
1 31
|
eqbrtrrid |
⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷 ) ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼ ( 𝐵 ∪ 𝐷 ) ) |