Metamath Proof Explorer


Theorem uneq1

Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion uneq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 orbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝑥𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) ) )
3 elun ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
4 elun ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ 𝑥 ∈ ( 𝐵𝐶 ) ) )
6 5 eqrdv ( 𝐴 = 𝐵 → ( 𝐴𝐶 ) = ( 𝐵𝐶 ) )