Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uneq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | orbi1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 3 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 4 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↔ 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ) |
| 6 | 5 | eqrdv | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∪ 𝐶 ) = ( 𝐵 ∪ 𝐶 ) ) |