Metamath Proof Explorer


Theorem uneq12i

Description: Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004) (Proof shortened by Eric Schmidt, 26-Jan-2007)

Ref Expression
Hypotheses uneq1i.1 𝐴 = 𝐵
uneq12i.2 𝐶 = 𝐷
Assertion uneq12i ( 𝐴𝐶 ) = ( 𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 uneq1i.1 𝐴 = 𝐵
2 uneq12i.2 𝐶 = 𝐷
3 uneq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ( 𝐴𝐶 ) = ( 𝐵𝐷 ) )
4 1 2 3 mp2an ( 𝐴𝐶 ) = ( 𝐵𝐷 )