Metamath Proof Explorer


Theorem uneq2i

Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis uneq1i.1 𝐴 = 𝐵
Assertion uneq2i ( 𝐶𝐴 ) = ( 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 uneq1i.1 𝐴 = 𝐵
2 uneq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴 ) = ( 𝐶𝐵 ) )
3 1 2 ax-mp ( 𝐶𝐴 ) = ( 𝐶𝐵 )