Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
2 |
|
eqtr |
⊢ ( ( ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) = 𝐶 ) → ( 𝐵 ∪ 𝐴 ) = 𝐶 ) |
3 |
2
|
eqcomd |
⊢ ( ( ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) = 𝐶 ) → 𝐶 = ( 𝐵 ∪ 𝐴 ) ) |
4 |
|
difeq1 |
⊢ ( 𝐶 = ( 𝐵 ∪ 𝐴 ) → ( 𝐶 ∖ 𝐴 ) = ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) ) |
5 |
|
difun2 |
⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) |
6 |
|
eqtr |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) = ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) ∧ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) ) → ( 𝐶 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) ) |
7 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
8 |
7
|
eqeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( 𝐵 ∩ 𝐴 ) = ∅ ) |
9 |
|
disj3 |
⊢ ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ 𝐵 = ( 𝐵 ∖ 𝐴 ) ) |
10 |
8 9
|
bitri |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐵 = ( 𝐵 ∖ 𝐴 ) ) |
11 |
|
eqtr |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) ∧ ( 𝐵 ∖ 𝐴 ) = 𝐵 ) → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) |
12 |
11
|
expcom |
⊢ ( ( 𝐵 ∖ 𝐴 ) = 𝐵 → ( ( 𝐶 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
13 |
12
|
eqcoms |
⊢ ( 𝐵 = ( 𝐵 ∖ 𝐴 ) → ( ( 𝐶 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
14 |
10 13
|
sylbi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐶 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
15 |
6 14
|
syl5com |
⊢ ( ( ( 𝐶 ∖ 𝐴 ) = ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) ∧ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
16 |
4 5 15
|
sylancl |
⊢ ( 𝐶 = ( 𝐵 ∪ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
17 |
3 16
|
syl |
⊢ ( ( ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) = 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
18 |
1 17
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐶 → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
19 |
18
|
com12 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
21 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) → 𝐴 ⊆ 𝐶 ) |
22 |
|
difssd |
⊢ ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 ) |
23 |
|
sseq1 |
⊢ ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → ( ( 𝐶 ∖ 𝐴 ) ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
24 |
22 23
|
mpbid |
⊢ ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → 𝐵 ⊆ 𝐶 ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) → 𝐵 ⊆ 𝐶 ) |
26 |
21 25
|
unssd |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
27 |
|
eqimss |
⊢ ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) |
28 |
|
ssundif |
⊢ ( 𝐶 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐶 ∖ 𝐴 ) ⊆ 𝐵 ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → 𝐶 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) → 𝐶 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
31 |
26 30
|
eqssd |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) → ( 𝐴 ∪ 𝐵 ) = 𝐶 ) |
32 |
31
|
ex |
⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → ( 𝐴 ∪ 𝐵 ) = 𝐶 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐶 ∖ 𝐴 ) = 𝐵 → ( 𝐴 ∪ 𝐵 ) = 𝐶 ) ) |
34 |
20 33
|
impbid |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 ↔ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |