Metamath Proof Explorer


Theorem uneqri

Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis uneqri.1 ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥𝐶 )
Assertion uneqri ( 𝐴𝐵 ) = 𝐶

Proof

Step Hyp Ref Expression
1 uneqri.1 ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥𝐶 )
2 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
3 2 1 bitri ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ 𝑥𝐶 )
4 3 eqriv ( 𝐴𝐵 ) = 𝐶