Metamath Proof Explorer


Theorem unexb

Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998)

Ref Expression
Assertion unexb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 uneq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 ) = ( 𝐴𝑦 ) )
2 1 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥𝑦 ) ∈ V ↔ ( 𝐴𝑦 ) ∈ V ) )
3 uneq2 ( 𝑦 = 𝐵 → ( 𝐴𝑦 ) = ( 𝐴𝐵 ) )
4 3 eleq1d ( 𝑦 = 𝐵 → ( ( 𝐴𝑦 ) ∈ V ↔ ( 𝐴𝐵 ) ∈ V ) )
5 vex 𝑥 ∈ V
6 vex 𝑦 ∈ V
7 5 6 unex ( 𝑥𝑦 ) ∈ V
8 2 4 7 vtocl2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
9 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
10 ssexg ( ( 𝐴 ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ∈ V ) → 𝐴 ∈ V )
11 9 10 mpan ( ( 𝐴𝐵 ) ∈ V → 𝐴 ∈ V )
12 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
13 ssexg ( ( 𝐵 ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ∈ V ) → 𝐵 ∈ V )
14 12 13 mpan ( ( 𝐴𝐵 ) ∈ V → 𝐵 ∈ V )
15 11 14 jca ( ( 𝐴𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
16 8 15 impbii ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴𝐵 ) ∈ V )