| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uneq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∪ 𝑦 ) ∈ V ↔ ( 𝐴 ∪ 𝑦 ) ∈ V ) ) |
| 3 |
|
uneq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∪ 𝑦 ) ∈ V ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
5 6
|
unex |
⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
| 8 |
2 4 7
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 9 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 10 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V ) |
| 11 |
9 10
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → 𝐴 ∈ V ) |
| 12 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 13 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ) → 𝐵 ∈ V ) |
| 14 |
12 13
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → 𝐵 ∈ V ) |
| 15 |
11 14
|
jca |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 16 |
8 15
|
impbii |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ↔ ( 𝐴 ∪ 𝐵 ) ∈ V ) |